EFFICIENT SYNTHESIS OF 2,4,5-TRISUBSTITUTED IMIDAZOLES USING SILICOTUNGSTIC ACID AS CATALYST

Authors

  • B.P. ANKUSH Department of Chemistry, Kai.Rasika College Deoni Latur.
  • B.V. SHITOLE Vasant College,Kaij-431519 (M.S), India.
  • P.G. KUMDALE P.G. Research centre, Department of Chemistry, Shri Shivaji College Parbhani, (M.S)
  • S.B. ADE P.G. Research centre, Department of Chemistry, Shri Shivaji College Parbhani, (M.S) India.
  • N.V. SHITOLE P.G. Research centre, Department of Chemistry, Shri Shivaji College Parbhani, (M.S) India.

Keywords:

Multi-component reaction, Silicotungstic Acid, 2,4,5-trisubstituted Imidazoles derivatives, One pot

Abstract

Objective: One-pot multicomponent reactions (MCRs) that convert more than two reactants directly into their products are of interest to chemists, owing to conserving atom economy and fostering the benign synthesis of organic compound like 2,4,5-trisubstituted Imidazoles derivatives. were efficiently synthesized by the reaction of benzyl/benzoin, ammonium acetate, and aromatic aldehydes in the presence of Silicotungstic acid as catalyst in ethanol.

Materials and Methods: 2,4,5-trisubstituted Imidazoles derivatives were efficiently synthesized by the reaction of benzyl/benzoin, ammonium acetate, and aromatic aldehydes in the presence of Silicotungstic acid as catalyst in ethanol under reflux.

Result: The syntheses of 2,4,5-triarylimidazoles using various benzaldehyde, benzil, ammonium acetate in the presence of a catalytic amount of silicotungstic acid (7.5 % ) under reflux using ethanol as solvent.

Conclusion: The attractive features of this process are mild reaction conditions, short reaction times, easy isolation of products, and excellent yields.

References

1. Bienayme H, Hulme C, Oddon, G, Schmitt P. Maximizing Synthetic Efficiency: Multi?Component Transformations Lead the Way Chem. Eur. J. 2000;6: 3321-3329.
2. Weber L, Illgen K, Almstetter M. Discovery of New Multi Component Reactions with Combinatorial Methods Synlett. 1999; 3:366-374.
3. Wang L, Woods, KW, Li Q, Barr, KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui YH, Marsh K, Warner R, Lee, JY, Mozng NZ, Frost D, Rosenberg SH, Sham HL, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure–activity relationship, pharmaco kinetics, and in vivo antitumor activity evaluation J. Med. Chem. 2002;45:1697-1711.
4. Silva VG, Silva RO, Damasceno SRB, Carvalho NS, Prudencio, RS, Aragao KS, Guimaraes MA, Campos SA, Veras LMC, Godejohann M, Leite JRSA, Barbosa AL R. Medeiros JVR. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus J. Nat. Prod. 2013; 76:1071-1077.
5. Sharma D. Narasimhan B. Kumar P. Judge V. Narang R. Clercq ED. Balzarini Synthesis, antimicrobial and antiviral
evaluation of substituted imidazole derivatives, J. Eur. J. Med. Chem. 2009:44;2347-2353.
6. Li JT. Chen BH. Li YW. Sun XL. IJAPBC, 2012; 1:287.
7. Kidwai M, Saxena S. Rastogi S. An Efficient Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted-1H-imidazoles Bull. Korean Chem. Soc.2005; 26:2051-2053.
8. Laufer S, Hauser D. Stegmiller T. Bracht C. Ruff K. Schattel V. Albrecht W. Koch P. Tri- and tetrasubstituted imidazoles as p38alpha mitogen-activated protein kinase inhibitors. Bioorg. Med. Chem. Lett. 2010; 20:6671-6675.
9. Weinstein DS. Liu W. Ngu K. Langevine C. Combs DW. Zhuang S. Chen C. Madsen CS. Harper TW. Robl, JA. Discovery of selective imidazole-based inhibitors of mammalian 15-lipoxygenase: highly potent against human enzyme within a cellular environment Bioorg. Med. Chem. Lett. 2007:17: 5115-20.
10. Wasserscheid P. Keim W. Ionic Liquids-New "Solutions" for Transition Metal Catalysis Angew Chem. Int. Ed. 2000:39; 3772-3789.
11. Satoru I. Jap. Pat. 1989:01117:867, Chem. Abstr. 1989:111; 214482.
12. Japp FR. Robinson HH. Constitution des Lophins und des Amarins Chem. Ber. 1882:15; 1268-1270.
13. Wolkenberg SE. Wisnoski DD. Leister WH. Wang Y. Zhao Z. Lindsley CW. Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation. Org. Lett. 2004;6:1453-6.
14. Wang LM. Wang YH. Tian H. Yao YF. Shao JH. Liu BJ. Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate.J. Fluorine Chem. 2006;127: 1570-1573.
15. Kidwaia M. Mothsraa P. Bansala V. Somvanshib RK. Ethayathullab AS. Deyb S. Singh TP. One pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst J.Mol.Catal.A Chem. 2007;265:177-182.
16. Sangshetti JN. Kokare ND. Kothakar SA. Shinde DB. Sodium Bisulfite as an Efficient and Inexpensive Catalyst for the One-pot Synthesis of 2,4,5-Triaryl-1H-imidazoles from Benzil or Benzoin and Aromatic Aldehydes Mont. Fur. Chem. 2008;139: 125-127.
17. Shitole NV. Shelke KF. Sonar SS. Sadaphal SA. Shingate BB. Shingare MS. L-Proline as an Efficient Catalyst for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles Bull. Korean Chem. Soc. 2009;30:1963-66.
18. Wang R. Liu C. Luo G. A convenient synthesis of 2,4,5-triarylimidazoles catalyzed by Y(TFA)3 Green Chem. Lett. Rev. 2010;3:101-103.
19. Mohammadi A. Keshvri H. Sandaroos R. Roushi H. Sepehr Z. A novel polymeric catalyst for the one-pot synthesis of 2,4,5-triaryl-1H-imidazoles J. Chem. Sci. 2012; 124:717.
20. Shitole NV. Shitole BV. Kakde GK. Shingare MS. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1HImidazole Orbital Elec. J. Chem. 2013;5: 35-39.
21. Safari J. Naseh S. Zarnegar Z. Akbari Z. Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst J. Taibah Univ. Sci. 2014;8:323-330
22. Shitole BV. Shitole NV. Ade SB. Kakde GK. Microwave-induced One-pot Synthesis of 2,4,5-trisubstituted Imidazoles Using Rochelle Salt as a Green Novel Catalyst Orbital: Electron. J. Chem. 2015;7 (3):240-244.
23. Ghodsi MZ. Alireza B. Negar L. Zahra F. Efficient one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst J. Saudi Chem. Soci. 2016;20:419-427.
24. Korupolu RB. Srividhya M. Suri BM. Nooka RA. Chem. Sci. Tran. 2017; 6:428.
25. Najmesh Z. Ali J. Mohammad KM. Haman T. Microwave-promoted solvent free one-pot synthesis of triazolo[1,2-a] indazole-triones catalyzed by silica-supported La0.5 Ca 0.5Cro3 nanoparticles as a new and reusable perovskitetype oxide Bull. Chem. Soc. Ethiop. 2018;32: 239-248.
26. Ágnes M. Zoltán H. One-Pot Three-Component Synthesis of 2,4,5-Triaryl-1H-imidazoles in the Presence of a Molecular Sieve Supported Titanium Catalyst under Mild Basic Conditions Synlett 2019;30:89-93.
27. Rafiee E. Zolfagharifar Z. Joshagani M. Eavani S. tungstosilicic acid supported on different carriers: Pronounced catalytic activity in the synthesis of bis(indolyl)methanes under solvent-free conditions Synth. Commun. 2011;41: 459-467.
28. Sawant DP. Halligudi SB. Alkylation of benzene with ?-olefins over zirconia supported 12-silicotungstic acid J. Mol. Catal. A: Chem. 2005; 237:137.
29. Eriko, T.; Satoshi, S.; Ryoji, T.; Toshiaki, S. Production of acrolein from glycerol over silica-supported heteropolyacids Catal. Commun. 2007;8:1349-1353.
30. Murugan R. Karthikeyan M. Perumal PT. Reddy BSR. A mild, efficient and improved protocol for the synthesis of novel indolyl crown ethers, di(indolyl)pyrazolyl methanes and 3-alkylated indoles using H4[Si(W3O10)3] Tetrahedron 2005;61:12275-12281.
31. Kamakshi R. Reddy BSR. Synthesis of 2, 2, 4-dihydroquinolines using heteropolyacid as a catalyst Catal. Commun. 2007; 8:825-828.
32. Kobra N. Silicotungstic acid (H4SiW12O40): An efficient Keggin heteropoly acid catalyst for the synthesis of oxindole derivatives Arab. J. Chem. 2017; 10:283-287.
33. Spectroscopic data of principle compounds.
2-(4-Chlorophenyl)-4,5-diphenyl-1H-imidazole (4a): IR (KBr, cm-1): 3442 (N-H), 1602 (C = C), 1577 (C = N). 1H NMR (CDCl3/ DMSO-d6, 500 MHz, ? ppm): 7.25 (d, 2 H, J = 8.4 Hz, Ar-H), 7.75 (d, 2 H, J = 8.4 Hz, Ar-H) 7.25-7.70 (m, 10 H, Ar-H) 12.10 (1 H, brs, NH). ES-MS (m/z): 331 (M + 1), 332 (M + 3).
2,4,5-Triphenyl-1H-imidazole (4b): IR (KBr, cm-1): 3415 (N-H), 3045 (C-H), 1610 (C = C), 1585 (C = N). 1H NMR (CDCl3/DMSO-d6, 500 MHz, ? ppm): 7.5-8.2 (m, 15 H, Ar-H), 12.51 (1 H, brs, NH). ES-MS (m/z): 297 (M + 1).
2-(4-Methoxyphenyl)-4,5-diphenyl-1H-imidazole (4c): IR (KBr, cm-1): 3444 (N-H), 2951 (C-H), 1620 (C = C), 1565 (C = N), 1360 (C-O). 1H NMR (CDCl3/DMSO-d6, 500 MHz, ? ppm): 3.81 (s, 3 H), 7.03 (d, 2 H, J = 8.4 Hz, Ar-H), 7.89 (d, 2 H, J = 8.4 Hz, Ar-H). 7.27-7.77 (m, 10 H, Ar-H), 12.22 (1 H, brs, NH). ES-MS (m/z): 327 (M + 1).

Published

31-05-2020

How to Cite

ANKUSH, B., SHITOLE, B., KUMDALE, P., ADE, S., & SHITOLE, N. (2020). EFFICIENT SYNTHESIS OF 2,4,5-TRISUBSTITUTED IMIDAZOLES USING SILICOTUNGSTIC ACID AS CATALYST. Innovare Journal of Sciences, 8(7), 78–80. Retrieved from https://journals.innovareacademics.in/index.php/ijs/article/view/38538

Issue

Section

Articles