EFFECT OF 6 WEEKS OF ROPE TRAINING ON THE GROSS SKILLS AMONG CHILDREN AGED 10–12 YEARS-FOCUSED BOY STUDENTS

MOJTAFA BRARAZADE GRIVDEHI1, MOHAMMADLAGHER FORGHANI OZRUDI2, MINA KHANJANI3

1Ph.D. Physical Education, Education Office, Babol, Iran. 2MA Sports Management, PE Teacher, Education Office, Babol, Iran. 3Ph.D. Physical Education, Azad Islamic University, Babol, Iran. Email: mojtabagharforghani@gmail.com

ABSTRACT

The aim of this study is to examine the effect of 6 weeks of rope training on the gross skills among Children Aged 10–12 Years-Focused Boy Students. The study has been done in semi-experimental method. A recent study statistical society includes all boy students of elementary schools in which are learning Tanavaz National Project in 117 schools in babol city. Statistical society has been selected randomly (cluster-stage) and in the first stage 3 schools and in the second stage in any school one class and in any class, about 18 students has been selected randomly and divided in three groups of control (n=15), fast (n=15) and demonstrations (n=15). Statistical datum has been analyzed by one-directed analysis and non-parametric test of Kruskal–Wallis and post-hoc test of Tukey by SPSS software and in the meaningful level of p≤0.05. Findings showed participants do have the mean height of 1.45±0.16 meter and the weight of 37.75±11.4 kg. Datum results showed Tanavaz Project from a statistical view in the two groups of fast and demonstrations does have a meaningful effect on balance, bilateral coordination, power, and growth of gross motor skills than to the control group. However, its effect on run speed and agility in the three groups were not meaningful. On the other hand, there is no meaningful difference among balance growth and two-directed coordination and the growth of gross motor skills in the group of fast-demonstrations Rope Training (p>0.05). Furthermore, there is the meaningful difference among the growth mean in children’s power in the group of fast-demonstrations Rope Training (p=0.001). On the other hand, fast Rope Training does have a meaningful improvement in children’s power growth in fast Rope Training to showing one. Rope Training could be a suitable program for the development of the gross motor skills of boys.

Keywords: Rope training, Gross skills, Elementary school students, Boy.

INTRODUCTION

Movement is a natural one and does have a central role in children’s growth. This role is critical on different grounds such as recognition growth, sentimental growth, and movement growth. Movement provides interaction to the environment and responding to environmental stimuli. Movement is the primary instrument in gathering information in children and helps them to be familiar with more complicated information (Gallahue and Ozmun, 2002).

One of the most important objectives of children’s growth study is to help trainers in communicating with children effectively (Parsa, 2006). To grow understanding-movement abilities in children, primary experience is very important. Although understanding-movement abilities do have different ratio related to environment and heredity, one of the important environmental factor in the growth of these abilities is to how pass elementary years and sensitive years of children (Fallah, 1998).

Game and physical activity does have a sensitive and refining role in strengthening the level and understanding-movement growth in children. When the child does activity or movement behavior, pleasure, freshness, and game leads to repeating activity in movement and bodily activity (Mofti, 1998).

Rope training is a feasible and perfect activity in which does have a positive effect on all bodily fitness and movement factors and is very cheap and in access of general in any place now is an independent sports field, seeking and compounded of different skills such as rhythmic and is along with acrobatic skills along music in which be executed by one, two and group in the two parts of fast and demonstrations. This sports field as sports activity, in the scientific method and basic sport would be applied for increasing fitness level and general body fitness, especially in low age in school sport and university (Tanavaz Project Method, 2011).

Almost basic understanding-motor skills are gross motor skills. Gross motor skills are those which are using the great muscle of the body and include skills for moving the body in space (movement, maintaining a balance against earth’s gravity force (stability movement) and giving force to objects and getting their forces (touch up movement) (Derashgi, 2007).

The study result of Melby (1936), Wilber (1966), and Roozen (2006) showed executing jump experiment by rope is a valuable activity in which leads to improvement in muscle power, bodily resistance, heart health and blood vessels dependent to it, balance and bodily balance, agility and coordination among body muscles.

Body good control are situation, balance and body’s element symmetry and jumping to rope and bodily fitness are skills, innovation power and creativity are the possible result of this activity (Wilber, 1966).

Rapidly and speed of hands and feet are of the two sport characteristic influential on competitive superiority of all sports. Ropewalking is an experimental instrument without requirement of high time and different experimental meeting in a week increases rapidly and speed (Lee, 2010). Speedy experimental program strengthens upper part of body and lower part of body. In general, in a 4-weeks period after executing regular speedy experiment in athletes, corpus and forearm strengthen outstandingly. The ability of muscles behind feet shank and four heads of femur develops shoulder muscles and back and improve maintenance mode and balance of body (Lee, 2010). Student or athletes begins to game juggling by trainer order in 30 seconds. When rope has passed under right feet, counting would begin (Tanavaz project method, 2011).

There are so many skills in showing section as one, two persons or groups by short and tall rope and by two or more ropes (Roohi et al., 2023).
education program in national design of rope-walking has been approved and executed in country's schools in which include ten skills proposed and designed by rope walking association (Jumping-Rope project guide direction, 2011; Sadatmazaei, 2005).

Of these skills, 6 skills includes: jumping twice and passing rope one time (stop on the feet) zigzag [jumping pair in any direction] pair back and forward, (open feet in each direction) feet scissor from forward, waist round is of gross skills. Rope-walking is improving coordination of nerves and muscles, improves motor rhythm, increases speed and reaction, and develops body capability (Roohi et al., 2010).

Rope Training experiments strength balance in athletes (Way, 2013). Yukselen (2008) study result showed bodily experiment influences on balance of 3-6 years old children. Srhoj (2002), Srhoj et al. (2006), Gholami et al. (2013), Aldnier et al. (2013), believes there is positive relation among balance and agility and by improvement in one of them, the other will improve, too. Balance and agility grow by children interaction to environment and experimentation through it. Balance and agility in game form is a measurable activity for children and involvement of non-game. In general, Rope Training strengthens body readiness- motor-like coordination among nerve and muscle, agility, rhythm, and transformation speed in a short term (Hall et al., 1980; Perrot and Bertsch, 2007, Makiani, 2011).

Williams (1983) found balance progress from 3 to 18 years old by reviewing age and gender differences. Simons et al. (1990) along with this result have found linear increases in a stable balance of girls in 6-18 years old. Different study’s results showed in general, women in childhood, in the two stable and seeking balances are better than men, but this superiority would vanish in youth (Gallahue and Ozmun, 2002).

Williams and Hodes (2008) in a study on school boys and girls have concluded growth of basic skills is not influenced by contribution in sports activity and only grows based on age and boost.

Emarati et al. (2011) study result showed school selective games does have a meaningful influence on speed, upper-part coordination, upper-part agility and understanding-motor growth in testier, but its influence are not meaningful in stable-seeking balance, bilateral coordination, power, response speed, visual-motor control, and social growth of testier.

A study has been done in general are influential on rope walking and motor skills (Makiani, 2011; Chao and Shih, 2010; Nikeson, 2005; Özer et al., 2011). But we compared fast and demonstrations experiment influence on gross skills in the expert term, for the first time. As we mentioned above, and the result of the studies requires examining the influence of the Tanavzar National Project on the gross motor skills of boy students in four grade? Does fast rope Training education is influential on student gross motor skills in this age? Does demonstrations Rope Training education is influential on boy students gross motor skills?

METHODOLOGY

The method of research is semi-experimental. Statistical Society of Research includes among children aged 10-12 years-focused boy students in Babol city. They are educating in 117 schools. Among them, they have been selected randomly (cluster-stage) in the first stage 3 schools and in the next stage in any school, one class and in any class student, 15 students have been selected randomly in which divided into three equal groups of control (n=15), fast group (n=15) and demonstrations group (n=15). Therefore, the research statistical society includes 45 students. Students executed Rope Training practice in the two groups of demonstrations and fast in 6 weeks and any two weeks by 40 minutes. In any meeting, at first about 10 minutes has done general body warming including tension, movement, jumping fitted to the student age. This group has done 10 minutes to class activity and 20 minutes to Rope Training program as the method of Tanavzar project (2011) and used of Bruninks-Oserskys gross motor skills test including four subtests in run speed and agility, balance, bilateral coordination and power. The research hypothesis has been tested by the aid of inference statistics in variance one-directed analysis and post-hoc Tukey test and the used of SPSS software in analyzing datum.

FINDINGS

Contributors do have a mean height of 1.4±0.16 meter and the mean weight of 37.75±11.4.

The result of the Kruskal-Wallis test is in Table 1 shows there is no meaningful difference among the mean of run speed and children’s agility in the speedy rope walking group, showing and control group (p=0.052, x²=5.92). Furthermore, there is meaningful difference among the mean of children’s balance mean in the speedy rope walking group, showing and control group (x²=26.21, p=0.001). Therefore, there have used of pair comparison to equilibrium for determining the resource of difference and test of sub-hypothesis.

The result of pair comparing in Table 2 shows there is meaningful relation among the mean of balance growth in children in the fast Rope Training group (3.37) and control (0.06) (p=0.006). In other words, speedy rope-walking leads to meaningful improvement in children balance. There is meaningful difference among the mean of children balance in the demonstrations Rope Training group (6.000) and control (0.006) (p=0.001). In other words, demonstrations of Rope Training leads to meaningful improvements in children’s balance growth. Furthermore, there is no meaningful difference among the mean of balance growth in children in the fast and demonstrations Rope Training group. (p=0.142).

The result of the Kruskal-Wallis test in Table 3 showed there is the meaningful difference among the mean of bilateral coordination in the fast Rope Training group, demonstrations, and control group (x²=28.46, p=0.001). Therefore, there have used of pair comparison to equilibrium in determining different resources and testing sub-hypothesis.

The result of pair comparison in Table 4 showed there is the meaningful difference among bilateral coordination mean growth in fast Rope Training group (4.21) and control (1.80) (p=0.001). In other words, fast Rope Training leads to meaningful improvement in children bilateral coordination. There is meaningful difference among the growth of

Table 1: The result of Kruskal–Wallis test for subtest of growth, run speed and agility

<table>
<thead>
<tr>
<th>Variable</th>
<th>χ²</th>
<th>df</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run speed and agility</td>
<td>5.92</td>
<td>2</td>
<td>0.052</td>
</tr>
<tr>
<td>Balance</td>
<td>26.21</td>
<td>2</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2: The result of pair comparing for sub test of balance growth

<table>
<thead>
<tr>
<th>Groups</th>
<th>Test statistic</th>
<th>Significant</th>
<th>Adjusted significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-control</td>
<td>-14.76</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>Demonstrations-control</td>
<td>-24.23</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fast-demonstrations</td>
<td>-9.46</td>
<td>0.047</td>
<td>0.142</td>
</tr>
</tbody>
</table>

Table 3: The result of Kruskal–Wallis test for sub test of bilateral coordination growth

<table>
<thead>
<tr>
<th>Variable</th>
<th>χ²</th>
<th>df</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral coordination</td>
<td>28.46</td>
<td>2</td>
<td>0.001</td>
</tr>
</tbody>
</table>
bilateral coordination in the demonstrations Rope Training group (4.93) and control (1.80) (p=0.001). In other words, demonstrations of Rope Training leads to meaningful improvement in children’s bilateral coordination growth. Furthermore, there is no meaningful difference among the mean of bilateral coordination in children in the fast Rope Training group and demonstrations (p=0.639).

The result of the Kruskal–Wallis test in Table 5 showed there is the meaningful difference among the mean of power growth in fast, demonstrations, and control demonstrations Rope Training group (x²=23.51, p=0.001). Therefore, we have used of pair comparison in determining the result of differences and testing the sub-hypothesis.

The result showed there is the meaningful difference among the mean of children power growth in the fast Rope Training group (2.33) (p=0.001). In other words, fast Rope Training leads to meaningful improvement in children’s power growth. There is no meaningful difference among children in the mean power growth in the fast Rope Training group (2.33) and demonstrations (0.40) (p=0.001). Therefore, in other words, fast Rope Training leads to meaningful improvement in children’s power growth than demonstrations of Rope Training.

The result of one-directed variance analysis in Table 7 showed there is meaningful difference among the mean growth of children gross motor skills in the demonstrations Rope Training group, fast and control group (p=0.001, f(2,42)=31.44). therefore, we have used of Tukey post-hoc test for determining difference between resource and sub hypothesis test.

The result of the Tukey post-hoc test in Table 8 showed there is the meaningful difference among children’s gross motor skills in the fact Rope Training group (10.93) and control (2.40) (p=0.003). In other words, fast Rope Training leads to meaningful improvement in children gross motor skills. There is the meaningful difference among children’s gross motor skills in demonstrations Rope Training group (12.13) and control (2.40) (p=0.001). In other words, demonstrations Rope Training leads to meaningful improvement in children’s gross motor skills. Furthermore, there is not meaningful difference among the mean growth of children’s gross motor skills in the demonstrations Rope Training group and the fast one (p=0.645).

DISCUSSION AND CONCLUSION

The result from examining one hypothesis based on the difference among the mean speed growth and boy agility in the fast Rope Training group, demonstrations, and control does not have a meaningful difference (p=0.05). The result showed Rope Training practices are influential on run speed growth and agility, but there is no meaningful difference among different groups. The result of recent study is the same as Akbari (2013), Vazinatser et al. (2013), Ghasemi et al. (2012), Emari et al. (2011), Makiani (2011), Alimahammedi (2009), Heidari et al. (2009), Rezvanian and Noorbakhsh (2007), Vermaik et al. (2006), Nikelson (2005), and Vikon (2004). The cause of non-symmetry is that before researchers do not divide tester groups in the two demonstrations fast and only evaluated the influence of Rope Training in the two test and control groups.

In a recent study, students received about 6 weeks and any week about 2 meetings and about 40 minutes of Rope Training program. Because student contributing Rope Training program does have progress in understanding-motor skills, we indicate this result are against boast theory in which indicates growth procedure would be controlled through internal factors (genetic) and no external (environmental and environmental factors are influential on the amount of growth temporarily and at last heredity factors does control growth (Heywood, 1993).

Rope Training program could be executed as an educational program in schools. One of the causes of none growing in students in understanding-motor skills is lacking a feasible educational environment in this regard. The other one is using non-physical education teacher in sports hours.

Furthermore, lacking space and adequate facilities and the low amount of sports hours in schools in which these hours would be dedicated to other lessons. At last, we compared the three groups of control, showing and speedy and showed there is no meaningful difference among these groups. However, speedy rope walking group does have more growth than control and showing in motor-recognition skills in which approves the influence of the ropewalking program on the growth of recognizing-motor skills in students.

The result of examining the two hypotheses showed there is the meaningful difference among the mean balance growth in boy students in speedy, showing and control groups. (p=0.05) the result of recent study is the same as researchers like Makiani (2011), Rezvanian and Noorbakhsh (2005), Sheikhi et al. (2003), Khalji and Enad (2004), Koo and Houn (2007), Bottnack et al. (2006), Nikelson (2005), Wilson (2004), but is not the same as Emari et al. (2011) result. Findings difference is related to the influence of expert exercise on stable equilibrium and seeking contributors. Because the ropewalking program does not require special space and does have simple facilities, it requires providing facilities by authorities and student develop their understanding-motor abilities by contributing to these exercises. Furthermore, the comparison among the three demonstrations, fast and control groups showed there is meaningful difference among demonstrations - control group and is not the same for other groups (fast, control, demonstrations). In other

Table 4: The result of pair comparison for bilateral coordination growth test

<table>
<thead>
<tr>
<th>Groups</th>
<th>Test statistic</th>
<th>Significant</th>
<th>Adjusted significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-control</td>
<td>-17.57</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Demonstrations-control</td>
<td>-23.60</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fast-demonstrations</td>
<td>-5.82</td>
<td>0.213</td>
<td>0.639</td>
</tr>
</tbody>
</table>

Table 5: The result of Kruskal–Wallis test for power growth sub test

<table>
<thead>
<tr>
<th>Variable</th>
<th>χ²</th>
<th>df</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>23.51</td>
<td>2</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 6: The result of pair comparison in power growth subtest

<table>
<thead>
<tr>
<th>Groups</th>
<th>Test statistic</th>
<th>Significant</th>
<th>Adjusted significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-control</td>
<td>-4.16</td>
<td>0.352</td>
<td>1.000</td>
</tr>
<tr>
<td>Demonstrations-control</td>
<td>-20.53</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fast-demonstrations</td>
<td>16.36</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 7: The result of one-sided variance analysis for growing gross motor skills

<table>
<thead>
<tr>
<th>Variable</th>
<th>Difference place</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross motor skills</td>
<td>Among groups</td>
<td>844.99</td>
<td>2</td>
<td>422.4</td>
<td>31.44</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Inner groups</td>
<td>564.2</td>
<td>2</td>
<td>282.1</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1409.2</td>
<td>42</td>
<td>604.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: The result of Tukey post hoc test for gross motor skills growth

<table>
<thead>
<tr>
<th>Groups</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast rope training</td>
<td>0.001</td>
</tr>
<tr>
<td>Control</td>
<td>0.645</td>
</tr>
<tr>
<td>Demonstrations rope training</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.645</td>
</tr>
<tr>
<td>Fast rope training</td>
<td>0.645</td>
</tr>
</tbody>
</table>
words, demonstrations Rope Training group does more equilibrium than fast and controlled Rope Training groups.

The result of examining three hypotheses showed there is meaningful difference among two-sided mean coordination of boy students in speedy rope walking group, demonstrations - control (p<0.05). Recent study result is the same as the researchers like Niklon (2005), Rezaei and noorbakhsh (2005), Sheikh et al. (2003), Khalji and Emad (2002), Ozer (2011), Koan and Hung (2007), Niklon (2005), Wilson (2004).

Furthermore, we compared three controls, fast, demonstrations groups and result showed there is meaningful difference in comparing the two demonstrations-controls, and fast-control groups and this difference is not the same as comparing fast- demonstrations group. In other words, demonstrations of Rope Training and fast groups do have more growth in coordination than the control group. The study result is not the same as Emarati et al. (2011), because strengthening this aspect of recognizing-motor growth requires expert exercise or long-term exercise. Because Rope Training program develops coordination in students, it is necessary to prepare facilities for students to develop their coordination by physical education experts.

The result of four hypotheses showed there is meaningful difference among the mean power growth in boy students in fast Rope Training, demonstrations and control groups (p<0.05). Recent study result is the same as researchers like Khalji et al. (2002), Ozer (2011), Matvinkov and Ahrabifard (2010), Koan and Hung (2007), Wilson (2004). Also, the comparison among three control, demonstrations and fast group showed there is the meaningful difference among comparing demonstrations-control and fast- demonstrations groups. This difference is not the same as the demonstrations-control group. In other words, the fast Rope Training group does have more power growth than control and demonstrations groups. The study research is not the same as Sheikh et al. (2003), because any motor program does have different influence on un-structure factors of recognizing motor skills, also is not the same as Emarati et al. (2011) result, power increases is dependent to two factors of muscle measure and ability of central nervous system in general stimulating of muscles. Achieving these two factors require the principle of added loading during long-term exercises.

The result of the fifth hypothesis examination showed there is the meaningful difference among gross motor skills in boy students in the fast Rope Training group, demonstrations, and control (p<0.05).

Based on the study result, we indicate rope walking program is influential on sub-structure factors of different dimensions of recognizing-motor skills, especially gross motor skills. If it is practiced in the correct method and in a feasible amount, could have an outstanding role in improving and developing balance, coordination, and student power.

CONFLICTS OF INTEREST
No reports on the conflicts of interest.

FUNDING
No reports on the sponsorship for the authors, research, or publication.

REFERENCES

Akbari H. 2013. Comparing spark motor program to gymnastic educational program feasible to growth on the growth of basic skills in 6 to 8 years old children. motor learning and growth seasonal. 13: 118-103

Chao C, Shih YL. 2010. The impact of rope jumping exercise on physical fitness of visually impaired students. Department of Physical Education, Asia University, 500, Lioufeng Road, Wufeng.

Kwon MS, Hwang KS. 2007. Effects of an exercise program on body composition, cardio pulmonary function, and physical fitness for obese children. Department of Nursing, Hallym University, Korea. kwon1314@hallym.ac.kr.

Mohammadali N, Nazarian A, Sabzi AH. 2008. the influence of preschool education on boys motor skills in 5-6 years old on sanandaj and comparing with existing custom. Sport and motor science magazine, 11: 29-38.

Mofidi F. 1997. Children bodily-motor preparedness requirement in preschool period in the program of country education system transformation

Rooze M. 2006. A chart is presented that lists exercise instructions for jumping rope. Men's Health. 21(3): 70.
Tanavaz education method project (Jumping-Rope design) for fourth grade in elementary school 2011. directive 121273 on 2011/09/19 education and training ministry, training assistance and physical education.
Vaziniraher A, Hayati A, Pakzamur F. 2013. The relation of bodily activity level by the growth of basic motor skills in elementary school children.

Motor behavior research scientific magazine (research in sport science), 14: 163-178.