TUDY ON CONVENTIONAL AND NOVEL CARDIAC BIOMARKERS IN ACUTE MYOCARDIAL INFARCTION

Authors

  • Munta Anil Kumar maharajah's institute of medical sciences(MIMS)
  • Raji Swamy
  • Ramaswamy .

Abstract

ABSTRACT
Objective: Employment of the serum cardiac markers rather than noninvasive or invasive procedures in the right time for accurate diagnosis of acute
myocardial infarction (AMI) is a more important to restore the patient, but using all of them is inappropriate and expensive. Therefore, this study is
designed to determine promising marker for the diagnosis of AMI.
Methods: A total of 33 healthy volunteers and 42 AMI patients were enrolled, and the serial blood samples were obtained from the AMI patients
at admission, 6
th
, 12
th
, 24
th
, and 48
hr from the time of onset. The diagnostic efficiency was determined for creatine kinase (CK), CK MB (CK-MB),
N-terminal fragment of B-type natriuretic peptide (NTproBNP), high sensitive cardiac troponin I (hscTnI), ischemia modified albumin (IMA),
heart-type fatty acid binding protein (H-FABP), and myoglobin using receiving operating characteristic (ROC) curves and compared for time
periods.
th
Results: Lipid profile, fasting blood sugar (FBS), creatinine, alanine transaminase (ALT), and aspartate transaminase (AST) were significantly higher
in AMI when compared to control. In the early stages of AMI, the ROC of H-FABP (0.89; 95% confidence interval [CI], 0.72-0.82), IMA (0.83; 95%
CI, 0.74-0.90), hscTnI (0.81; 95% CI, 0.75-0.92), NTproBNP (0.82; 95% CI, 0.72-0.89) and myoglobin (0.86; 95% CI, 0.76-0.93), and displayed good
diagnostic efficacy (p<0.0001).
Conclusion: Within 2-6 hrs from onset of the symptoms, H-FABP, IMA and Myoglobin showed good diagnostic ability and in the entire episode, hscTnI
holds its superiority in the diagnosis of AMI.
Keywords: Acute myocardial infarction, Serum cardiac markers, Serial sampling, Diagnostic ability.

 

Downloads

Download data is not yet available.

Author Biography

Munta Anil Kumar, maharajah's institute of medical sciences(MIMS)

department of biochemistry

assistant professor

References

REFERENCES

Mendis S, Thygesen K, Kuulasmaa K, Giampaoli S, Mähönen M, Ngu

Blackett K, et al. World Health Organization definition of myocardial

infarction: 2008-09 revision. Int J Epidemiol 2011;40(1):139-46.

Troughton RW, Richards AM. B-type natriuretic peptides and

echocardiographic measures of cardiac structure and function. JACC

Cardiovasc Imaging 2009;2(2):216-25.

Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide

levels in obese patients with advanced heart failure. J Am Coll Cardiol

;47(1):85-90.

Hall C. Essential biochemistry and physiology of (NT-pro)BNP. Eur J

Heart Fail 2004;6(3):257-60.

Trinder P. Determination of glucose in blood using glucose oxidase

with an alternative oxygen acceptor. Ann Clin Biochem 1969;6:24-7.

Talke H, Schubert GE. Enzymatic urea determination in the blood and

serum in the Warburg optical test. Klin Wochschr 1965;19(43):174.

Bowers LD. Kinetic serum creatinine Assays I. The role of various

factors in determining specificity. Clin Chem 1980;26(5):551-4.

Pearlman FC, Lee RT. Detection and measurement of total bilirubin

in serum, with use of surfactants as solubilizing agents. Clin Chem

;20(4):447-53.

Thefeld W, Hoffmeister H, Busch EW, Koller PU, Vollmar J. Reference

values for the determination of GOT, GPT, and alkaline phosphatase

in serum with optimal standard methods (author’s transl). Dtsch Med

Wochenschr 1974;99(8):343-4.

IFCC methods for the measurement of catalytic concentrations of

enzymes. Part 3, IFCC. Method for alanine aminotransferase (l-alanine

- oxoglutarate aminotransferase, ec 2.6.1.2). Clin Chim Acta

;105(1):145F-72.

Szasz G, Rautenburg HW. Normal values of diagnostically important

enzymes in the serum of children. Z Kinderheilkd 1971;111(3):233-9.

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic

determination of total serum cholesterol. Clin Chem 1974;20(4):470-5.

McGowan MW, Artiss JD, Strandbergh DR, Zak B. A peroxidase-

coupled method for the colorimetric determination of serum

triglycerides. Clin Chem 1983;29(3):538-42.

Burstein M, Scholnick HR, Morfin R. Rapid method for the isolation

of lipoproteins from human serum by precipitation with polyanions.

J Lipid Res 1970;11(6):583-95.

Tietz N, editor. Fundamentals of Clinical Chemistry. Philadelphia, PA:

W.B. Saunders Co.; 1976.

Bremmer FW. Cardiac disease and hypertension. In: Kalpan L, Pesce A,

editors. Clinical Chemistry Theory, Analysis and Correlation. St. Louis,

USA: C.V. Mosby Company; 1987.

Apple FS, Christenson RH, Valdes R Jr, Andriak AJ, Berg A, Duh SH,

et al. Simultaneous rapid measurement of whole blood myoglobin,

creatine kinase MB, and cardiac troponin I by the triage cardiac panel

for detection of myocardial infarction. Clin Chem 1999;45(2):199-205.

Behera S, Mangaraj M, Mohapatro PC. Diagnostic efficacy of ischemia

modified albumin and its correlation with lipid profile, oxidative stress

in acute myocardial infarction patients on admission. Asian Pac J Trop

Dis 2012;2(1):62-5.

Koracevic G, Petrovic S, Tomasevic M, Apostolovic S, Damjanovic M.

Stress hyperglycemia in acute myocardial infarction. Facta J Univ Ser

Med Biol 2006;13(3):152-7.

Jose P, Skali H, Anavekar N, Tomson C, Krumholz HM, Rouleau JL,

et al. Increase in creatinine and cardiovascular risk in patients with

systolic dysfunction after myocardial infarction. J Am Soc Nephrol

;17:2886-91.

Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a

cause of ischemic heart disease: Evidence, definition, measurement,

atherogenicity, high risk patients and present and future treatment.

Pharm Ther 2014;141:358-67.

Gaziano JM, Hennekens CH, Satterfield S, Roy C, Sesso HD,

Breslow JL, et al. Clinical utility of lipid and lipoprotein levels

during hospitalization for acute myocardial infarction. Vasc Med

;4(4):227-31.

Ferdous BA, Sultana N, Ahmed S, Khan EH, Sultana S, Parvin T. Serum

lipid profile in ischemic heart disease: A cross sectional analytical

study. Bangladesh J Med Biochem 2014;7(1):14-6.

Okuhara K, Kisaka T, Ozono R, Kurisu S, Inoue I, Soga J, et al. Change

in bilirubin level following acute myocardial infarction is an index for

heme oxygenase activation. South Med J 2010;103(9):876-81.

Lofthus DM, Stevens SR, Armstrong PW, Granger CB, Mahaffey KW.

Pattern of liver enzyme elevations in acute ST-elevation myocardial

infarction. Coron Artery Dis 2012;23(1):22-30.

Lazzeri C, Valente S, Tarquini R, Chiostri M, Picariello C, Gensini GF.

Prognostic values of admission transaminases in ST-elevation

myocardial infarction submitted to primary angioplasty. Med Sci Monit

;16(12):CR567-74.

Lindahl B, Lindback J, Jemberg T, Johnston N, Stridsberg M, Venge P,

et al. Serial analyses of N-terminal pro B type natriuretic peptide in

patients with non-ST-segment elevation acute coronary syndromes:

A fragmin and fast revascularisation during instability in coronary artery

disease (FRISC)-II sub study. J Am Coll Cardiol 2005;45(4):533-41.

ALGani FA. Significance of total creatine kinase and creatine kinaseMB

levels in patients

with acute myocardial

infarction. Int J Biol Med

Res

;2(3):762-5.

Shah H, Haridas N. A serial follow up study of cardiac marker enzymes

during the week after acute myocardial infarction. Indian J Clin

Biochem 2007;22(1):33-6.

de Winter RJ, Lijmer JG, Koster RW, Hoek FJ, Sanders GT. Diagnostic

accuracy of myoglobin concentration for the early diagnosis of acute

myocardial infarction. Ann Emerg Med 2000;35(2):113-20.

Alhadi HA, Fox KA. Heart-type fatty acid-binding protein in the early

diagnosis of acute myocardial infarction: The potential for influencing

patient management. Sultan Qaboos Univ Med J 2010;10(1):41-9.

Bhakthavatsala Reddy C, Cyriac C, Desle HB. Role of ischemia

modified albumin†(IMA) in acute coronary syndromes. Indian Heart J

;66(6):656-62.

Pan SM, Tong CY, Lin Q, Yao CL, Zhao J, Deng Z. Ischemia-modified

albumin measured with ultra-filtration assay in early diagnosis of acute

coronary syndrome. World J Emerg Med 2010;1(1):37-40.

Garcia-Valdecasas S, Ruiz-Alvarez MJ, Garcia De Tena J, De Pablo R,

Huerta I, Barrionuevo M, et al. Diagnostic and prognostic value of hearttype

fatty acid-binding protein

in the early hours of acute myocardial

infarction.

Acta

Cardiol 2011;66(3):315-21.

Elmadbouh I, Mahfouz R, Bayomy N, Faried W, Ghanayem N. The

Asian J Pharm Clin Res, Vol 9, Issue 2, 2016, 327-331

Kumar et al.

value of human heart-type fatty acid binding protein in diagnosis of

patients with acute chest pain. Egypt Heart J 2012;64:179-84.

Christenson E, Christenson RH. The role of cardiac biomarkers in the

diagnosis and management of patients presenting with suspected acute

coronary syndrome. Ann Lab Med 2013;33(5):309-18.

Heeschen C, Hamm CW, Mitrovic V, Lantelme NH, White HD; Platelet

Receptor Inhibition in Ischemic Syndrome Management (PRISM)

Investigators. N-terminal pro-B-type natriuretic peptide levels for

dynamic risk stratification of patients with acute coronary syndromes.

Circulation 2004;110(20):3206-12.

Fesmire FM, Christenson RH, Fody EP, Feintuch TA. Delta creatine

kinase-MB outperforms myoglobin at two hours during the emergency

department identification and exclusion of troponin positive nonST-segment

elevation

acute coronary

syndromes. Ann

Emerg

Med

;44(1):12-9.

Tanasijevic MJ, Cannon CP, Antman EM, Wybenga DR, Fischer GA,

Gruzien C, et al. Myoglobin, creatine-kinase-MB and cardiac troponin-I

-minute ratios predict infarct-related artery patency after thrombolysis

for acute myocardial infarction results from the thrombolysis in

myocardial infarction study. J Am Coll Cardiol 1999;34(3):739-47.

Published

01-03-2016

How to Cite

Kumar, M. A., R. Swamy, and R. . “TUDY ON CONVENTIONAL AND NOVEL CARDIAC BIOMARKERS IN ACUTE MYOCARDIAL INFARCTION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 2, Mar. 2016, pp. 327-31, https://journals.innovareacademics.in/index.php/ajpcr/article/view/10702.

Issue

Section

Original Article(s)