ANTI-HYPERGLYCEMIC EFFECT OF DIFFERENT FRACTIONS OF ANNONA RETICULATA LEAF
DOI:
https://doi.org/10.22159/ajpcr.2016.v9s2.13710Abstract
ABSTRACT
Context: Several species of the genus Annona were reported to have hypoglycemic properties and this makes Annona reticulata Linn. (Annonaceae)
an interesting plant for investigating its anti-hyperglycemic potential.
Objective: Different fractions prepared from hydro-alcoholic extract of A. reticulata leave were investigated for their blood glucose lowering effect on
Streptozotocin (STZ) induced hyperglycemic rats.
Methods: Ethyl acetate, methanol, and residual fractions (at dose level of 100 mg/kg by oral route) prepared from the hydro-alcoholic extract of
A. reticulata leave were administered for 14 consecutive days to STZ induced hyperglycemic rats for evaluation of their anti-hyperglycemic potential.
Anti-hyperglycemic potential was assessed by observation of a decrease in fasting blood glucose level.
Results: The studies revealed that ethyl acetate fraction decreased the blood glucose level of hyperglycemic rats from 447.67 to 234.17 mg/dL and is
significant (p<0.001) when compared with diabetic control group. The residual fraction and methanolic fraction decreased blood glucose level from
417.83 to 402.50 mg/dL and 432.33 to 371.67 mg/dL respectively but not significant when compared with the diabetic control group. Standard drug
metformin (dose 300 mg/kg) reduced the blood glucose level from 447.33 to 219.50 mg/dL.
Discussion: Ethyl acetate fraction at tested dose level was capable not only to control the elevated blood glucose level but also able to attenuate
certain secondary parameters associated with STZ induced hyperglycemia.
Conclusion: This study suggested that the ethyl acetate fraction prepared from hydro-alcoholic extract of A. reticulata leave exhibit potential antihyperglycemic
property
in the tested
experimental
models and should be investigated
further.
Keywords: Streptozotocin, Diabetes, Dyslipidemia.
Downloads
References
REFERENCES
Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic
effect used in the treatment of diabetes. J Ethnopharmacol
;99(3):325-48.
Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R. Antidiabetic
activity of aqueous leaf extract of Annona squamosa in streptozotocinnicotinamide
type
diabetic rats. J
Ethnopharmacol
;91(1):171-5.
ArunJyothi B, Venkatesh K, Chakrapani P, Roja Rani A. Phytochemical
and Pharmacological potential of Annona cherimola - A review. Int J
Phytomed 2011;3:439-47.
Adeyemi DO, Komolafe OA, Adewole OS, Obuotor EM, Adenowo TK.
Anti hyperglycemic activities of Annona muricata (Linn). Afr J Tradit
Complement Altern Med 2008;6(1):62-9.
Florence NT, Benoit MZ, Jonas K, Alexandra T, Désiré DD, Pierre K,
et al. Antidiabetic and antioxidant effects of Annona muricata
(Annonaceae), aqueous extract on streptozotocin-induced diabetic rats.
J Ethnopharmacol 2014;151(2):784-90.
Brindis F, González-Trujano ME, González-Andrade M, AguirreHernández
E,
Villalobos-Molina
R.
Aqueous
extract of
Annona
macroprophyllata:
A
potential a-glucosidase
inhibitor.
Biomed Res Int
;2013:591313.
Rout Soumya P, KarDurga M, MohapatraSantosh B, Swain Sharada P.
Anti-hyperglycemic effect Annona reticulata L. Leaves on experimental
diabetic rat model. Asian J Pharm Clin Res 2013;6 Suppl 1:56-60.
Rout SP, Kar DM. Identification of chemical compounds present in
different fractions of Annona reticulata L. leaf by using GC-MS. Nat
Prod Res 2014;28(20):1786-8.
Roy SK, Mishra PK, Nandy S, Datta R, Chakraborty B. Potential
wound healing activity of the different extract of Typhonium trilobatum
in albino rats. Asian Pac J Trop Biomed 2012;S1477-86.
Sachin A, Shreesh KO, Divya V. Characterisation of streptozotocin
induced diabetes mellitus in Swiss albino mice. Glob J Pharmacol
;3(2):81-4.
Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN.
Screening of Indian plants for biological activity. II. Indian J Exp Biol
;7(4):250-62.
Kar DM, Maharana L, Pattnaik S, Dash GK. Studies on hypoglycaemic
activity of Solanum xanthocarpum Schrad. and Wendl. fruit extract in
rats. J Ethnopharmacol 2006;108(2):251-6.
Ngueguim TF, Dimo T, Dzeufiet DP, Vouffo B, Dongo E, Renaud B,
et al. Antidiabetic activities of methanol-derived extract of
dorsteniapicta twigs in normal and streptozotocin-induced diabetic rats.
Asian J Tradit Med 2007;2(4):140-8.
Deluca HF, Cantorna MT. Vitamin D: Its role and uses in immunology.
FASEB J 2001;15(14):2579-85.
Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and
diabetes. Rheum Dis Clin North Am 2012;38(1):179-206.
Griz LH, Bandeira F, Gabbay MA, Dib SA, Carvalho EF. Vitamin D
and diabetes mellitus: An update 2013. Arq Bras Endocrinol Metabol
;58(1):1-8.
Ogunlesi M, Okiei W, Osibote EA. Analysis of the essential oil from the
leaves of Sesamum radiatum, a potential medication for male infertility
factor, by gas chromatography - mass spectrometry. Afr J Biotechnol
;9(7):1060-7.
Astarita G, Di Giacomo B, Gaetani S, Oveisi F, Compton TR, Rivara S,
et al. Pharmacological characterization of hydrolysis-resistant analogs
of oleoylethanolamide with potent anorexiant properties. J Pharmacol
Exp Ther 2006;318(2):563-70.
Cheng MC, Ker YB, Yu TH, Lin LY, Peng RY, Peng CH. Chemical
synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: A
bioactive agent found in the essential oil of mountain celery seeds.
J Agric Food Chem 2010;58(3):1502-8.
Chen C, Jin X, Meng X, Zheng C, Shen Y, Wang Y. Inhibition of TNFainduced
adhesion
molecule
expression
by
(Z)-(S)-9-octadecenamide,
N-(2-hydroxyethyl,1-methyl).
Eur J Pharmacol 2011;660(2-3):305-9.
Voegtlin C, Thompson JW, Dunn ER. Hyperglycemia produced by
glycerol. J Biol Chem 1925;64:639-42.
Nahak G, Sahu RK. In vitro antioxidativeacitivity of Azadirachta
indica and Melia azedarach leaves by DPPH scavenging assay. J Am
Sci 2010;6(6):123-8.
Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong
R, et al. Flavonoids in food and their health benefits. Plant Foods Hum
Nutr 2004;59(3):113-22.
Tepe B, Sokmen M, Akpulat AH, Sokmen A. In vitro antioxidant
activities of the methanol extracts of four Helichrysum species from
Turkey. Food Chem 2005;90:685-9.
Süzgeç S, Meriçli AH, Houghton PJ, Cubukçu B. Flavonoids of
Helichrysum compactum and their antioxidant and antibacterial
activity. Fitoterapia 2005;76(2):269-72.
Sefi M, Fetoui H, Makni M, Zeghal N. Mitigating effects of antioxidant
properties of Artemisia campestris leaf extract on hyperlipidemia,
advanced glycation end products and oxidative stress in alloxaninduced
diabetic rats. Food Chem Toxicol
;48(7):1986-93.
Lee KT, Sohn IC, Kim DH, Choi JW, Kwon SH, Park HJ. Hypoglycemic
and hypolipidemic effects of tectorigenin and kaikasaponin III in
the streptozotocin-lnduced diabetic rat and their antioxidant activity
in vitro. Arch Pharm Res 2000;23(5):461-6.
Gandhi GR, Ignacimuthu S, Paulraj MG. Solanum torvum Swartz. Fruit
containing phenolic compounds shows antidiabetic and antioxidant
effects in streptozotocin induced diabetic rats. Food Chem Toxicol
;49:2725-33.
Dewanjee S, Das AK, Sahu R, Gangopadhyay M. Antidiabetic activity
of Diospyros peregrine fruit: Effect on hyperglycemia, hyperlipidemia
and augmented oxidative stress in experimental Type2 diabetes. Food
Chem Toxicol 2009;47(10):2679-85.
Rout SP, Kar DM, Jagadeeshreddy E, Manoj S, Sengottuvel T. In vitro
antioxidant property of fractions of Annona reticulata (l) leave. Int J
Pharm Pharm Sci 2015;7(2):299-303.
Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant
treatments for diabetes. Studies in normal and streptozotocin diabetic
mice. Diabetologia 1990;33(8):462-4.
Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O,
Boccuzzi G. Oxidative stress impairs skeletal muscle repair in diabetic
rats. Diabetes 2004;53(4):1082-8.
Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS,
Gurtu S. Glibenclamide or metformin combined with honey improves
glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci
;7(2):244-52.
Lee A, Morley JE. Metformin decreases food consumption and induces
weight loss in subjects with obesity with type II non-insulin-dependent
diabetes. Obes Res 1998;6(1):47-53.
Szkudelski T, Szkudelska K. Streptozotocin induces lipolysis in rat
adipocytes in vitro. Physiol Res 2002;51(3):255-9.
Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin
Pract Endocrinol Metab 2009;5(3):150-9.
Del Pilar Solano M, Goldberg RB. Management of diabetic
dyslipidemia. Endocrinol Metab Clin North Am 2005;34(1):1-25.
Keidan B, Hsia J, Katz R. Plasma lipids and antidiabetic agents: A brief
overview. Br J Diabetes Vasc Dis 2002;2:40-3.
Baynes JW. Role of oxidative stress in development of complications in
diabetes. Diabetes 1991;40(4):405-12.
Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative
stress in rat liver and pancreas during progression of streptozotocin-
induced diabetes. Clin Sci (Lond) 1998;94(6):623-32.
Matsuda M, Shimomura I. Increased oxidative stress in obesity:
Implications for metabolic syndrome, diabetes, hypertension,
dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract
;7(5):e330-41.
Asian J Pharm Clin Res, Vol 9, Suppl. 2, 2016, 256-262
Rout et al.
Otani H. Oxidative stress as pathogenesis of cardiovascular risk
associated with metabolic syndrome. Antioxid Redox Signal
;15(7):1911-26.
Stephen ND, Daryl KG. Insulin, oral hypoglycemic agents, and the
pharmacology of the endocrine pancreas. In: Goodman Gilman A,
Hardman JG, Limbird LE, editors. Goodman & Gilman’s the
Pharmacological Basis of Therapeutics. 10
ed. New York: The
McGraw-Hill; 2001. p. 1686-92.
th
Mogensen CE, Steffes MW, Deckert T, Christiansen JS. Functional and
morphological renal manifestations in diabetes mellitus. Diabetologia
;21(2):89-93.
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS
Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K.
Prospective Diabetes Study 74. Diabetes 2006;55(6):1832-9.
Kiran G, Nandini CD, Ramesh HP, Salimath PV. Progression of early
phase diabetic nephropathy in streptozotocin-induced diabetic rats:
Evaluation of various kidney-related parameters. Indian J Exp Biol
;50(2):133-40.
Zafar M, Naeem-Ul-Hassan Naqvi S, Ahmed M, Kaimkhani ZA.
Altered kidney morphology and enzymes in streptozotocin-induced
diabetic rats. Int J Morphol 2009;27(3):783-90.
Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic
nephropathy. Nephrology (Carlton) 2007;12(3):261-6.
Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M,
Seifi B, et al. Protective effect of magnesium on renal function in STZ-
induced diabetic rats. J Diabetes Metab Disord 2014;13(1):84.
Ha H, Lee HB. Reactive oxygen species as glucose signaling
molecules in mesangial cells cultured under high glucose. Kidney Int
Suppl 2000;77(1):S19-25.
Iglesias-De La Cruz MC, Ruiz-Torres P, Alcamà J, DÃez-Marqués L,
Ortega-Velázquez R, Chen S, et al. Hydrogen peroxide increases
extracellular matrix mRNA through TGF-beta in human mesangial
cells. Kidney Int 2001;59(1):87-95.
Rafieian-Kopaei M, Nasri H. The ameliorative effect of Zingiber
officinale in diabetic nephropathy. Iran Red Crescent Med J
;16(5):e11324.
Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H,
Mansour MA. Metformin attenuates streptozotocin-induced diabetic
nephropathy in rats through modulation of oxidative stress genes
expression. Chem Biol Interact 2011;192(3):233-42.
Bruijstens LA, van Luin M, Buscher-Jungerhans PM, Bosch FH.
Reality of severe metformin-induced lactic acidosis in the absence of
chronic renal impairment. Neth J Med 2008;66(5):185-90.
Silvestre J, Carvalho S, Mendes V, Coelho L, Tapadinhas C, Ferreira P,
et al. Metformin-induced lactic acidosis: A case series. J Med Case Rep
;1:126.
Kumar AS, Venkatarathanamma V, Suneeta K, Kumari BS.
Comparative in vitro screening of α-amylase and α-glucosidase
enzyme inhibitory studies in leaves of Annona species. J Pharm Res
;4(12):4431-4.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.