SCREENING OF PUTATIVE THERAPEUTIC CANDIDATES IN SUPERBUG (STAPHYLOCOCCUS AUREUS): A SYSTEMATIC IN SILICO APPROACH

Authors

  • Kunal Zaveri
  • Kiranmayi Patnala Department of Biochemistry, Institute of Science, GITAM University

DOI:

https://doi.org/10.22159/ajpcr.2016.v9s2.13852

Abstract

ABSTRACT
Objective: Staphylococcus aureus, a superbug and antibiotic resistant pathogen, is one of the most infection causing organism, ranging from skin
allergies to severe lethal conditions. The prolonged use of different antibiotics and lack of optimal treatment over the antibiotic resistant species, led
to the identification of new, better and promising therapeutic candidates.
Methods: A systematic in silico filtration process was employed, which includes subtractive channels and reverse vaccinology techniques.
Results: Here, we report 12 possible drug targets and two vaccine candidates based on essentiality, non-human homolog, virulent and localization,
commonly in all the strains. Further characterization studies such as pathway analysis, chokepoint and structure prediction revealed, two proteins
as the best drug targets one being novel and the other druggable. Only one protein has shown the characteristic feature of vaccine candidate, having
antigenic property and an IgG binding domain.
Conclusion: Two best drug targets were commonly identified in all the strains of S. aureus namely UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--L-lysine
ligase (MurE) and cell division protein FtsA, whereas the best common vaccine candidate includes Peptidoglycan binding protein. The therapeutic candidates
reported in the present study might facilitate screening of new and better antimicrobial compounds, for an optimal treatment of S. aureus infections.
Keywords: Staphylococcus aureus, Drug target, Vaccine candidates, Subtractive proteomics, Reverse vaccinology.

Downloads

Download data is not yet available.

References

REFERENCES

Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug

discovery. Br J Pharmacol 2011;162(6):1239-49.

Schmitt M, Schuler-Schmid U, Schmidt-Lorenz W. Temperature limits

of growth, TNase and enterotoxin production of Staphylococcus aureus

strains isolated from foods. Int J Food Microbiol 1990;11:1-19.

Rode TM, Møretrø T, Langsrud S, Holck A. Responses of

Staphylococcus Aureus To Environmental Stresses. Stress Response of

Asian J Pharm Clin Res, Vol 9, Suppl. 2, 2016, 283-291

Zaveri and Patnala

Foodborne microorganismsicroorganisms. 2012:509-46.

Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant

Staphylococcus aureus infection. Clin Infect Dis 2008;46 Suppl 5:S350-9.

Argudín MÃ, Mendoza MC, Rodicio MR. Food poisoning and

Staphylococcus aureus enterotoxins. Toxins (Basel) 2010;2(7):1751-73.

Jevons MP. Celbenin†- resistant staphylococci. Br Med J. BMJ

Group; 1961. p. 124. Available from: http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC1952888/.

Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution

of methicillin-resistant Staphylococcus aureus. Trends Microbiol

;9(10):486-93.

Rice LB. Federal funding for the study of antimicrobial resistance in

nosocomial pathogens: No eskape. J Infect Dis 2008;197(8):1079-81.

Richards MS, Rittman M, Gilbert TT, Opal SM, DeBuono BA, Neill

RJ, et al. Investigation of a staphylococcal food poisoning outbreak in a

centralized school lunch program. Public Health Rep 1993;108(6):765-71.

Do Carmo LS, Cummings C, Linardi VR, Dias RS, De Souza JM, De

Sena MJ, et al. A case study of a massive staphylococcal food poisoning

incident. Foodborne Pathog Dis 2004;1(4):241-6.

Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, et al. An

extensive outbreak of staphylococcal food poisoning due to low-fat

milk in Japan: Estimation of enterotoxin A in the incriminated milk and

powdered skim milk. Epidemiol Infect 2003;130(1):33-40.

Schmid D, Gschiel E, Mann M, Huhulescu S, Ruppitsch W, Böhm G,

et al. Outbreak of acute gastroenteritis in an Austrian boarding school,

September, 2006. European Centre for Disease Prevention and Control

(ECDC) - Health Comunication Unit; 2007. Available from: http://

www.eurosurveillance.org/ViewArticle.aspx?ArticleId=692.

Weiler N, Leotta GA, Zárate MN, Manfredi E, Alvarez ME, Rivas M.

Foodborne outbreak associated with consumption of ultrapasteurized

milk in the Republic of Paraguay. Rev Argent Microbiol 2011;43(1):33-6.

Joshi S, Ray P, Manchanda V, Bajaj J, Gautam V, Goswami P, et al.

Methicillin resistant Staphylococcus aureus (MRSA) in India:

Prevalence & susceptibility pattern. Indian J Med Res 2013;137:363-9.

Moellering RC Jr. Vancomycin: A 50-year reassessment. Clin Infect Dis

;42 Suppl 1:S3-4.

Shoemaker DM, Simou J, Roland WE. A review of daptomycin

for injection (cubicin) in the treatment of complicated skin and skin

structure infections. Ther Clin Risk Manag 2006;2(2):169-74.

Sieradzki K, Tomasz A. Inhibition of cell wall turnover and autolysis by

vancomycin in a highly vancomycin-resistant mutant of Staphylococcus

aureus. J Bacteriol 1997;179(8):2557-66.

Projan SJ. Why is big pharma getting out of antibacterial drug

discovery? Curr Opin Microbiol 2003;6(5):427-30.

Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial

genomes database: New representation and annotation strategy. Nucleic

Acids Res 2014;42:D553-9.

Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the

database of essential genes that includes both protein-coding genes and

noncoding genomic elements. Nucleic Acids Res 2014;42:D574-80.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local

alignment search tool. J Mol Biol 1990;215(3):403-10.

Garg A, Gupta D. VirulentPred: A SVM based prediction method for

virulent proteins in bacterial pathogens. BMC Bioinformatics 2008;9:62.

Yu C, Chen Y, Lu C, Hwang J. Prediction of protein subcellular

localization. Amino Acids 2006;651:643-51.

Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb

0: Improved protein subcellular localization prediction with refined

localization subcategories and predictive capabilities for all prokaryotes.

Bioinformatics 2010;26(13):1608-15.

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:

An automatic genome annotation and pathway reconstruction server.

Nucleic Acids Res 2007;35:W182-5.

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P,

et al. Drugbank: A comprehensive resource for in silico drug discovery

and exploration. Nucleic Acids Res 2006;34:D668-72.

Doytchinova IA, Flower DR. VaxiJen: A server for prediction of

protective antigens, tumour antigens and subunit vaccines. BMC

Bioinformatics 2007;8:4.

Möller S, Croning MD, Apweiler R. Evaluation of methods for

the prediction of membrane spanning regions. Bioinformatics

;17(7):646-53.

Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R,

et al. The interpro protein families database: The classification resource

after 15 years. Nucleic Acids Res 2015;43:D213-21.

Yao B, Zhang L, Liang S, Zhang C. SVMTriP: A method to predict

antigenic epitopes using support vector machine to integrate tri-peptide

similarity and propensity. PLoS One 2012;7(9):e45152.

Human Microbiome Project Consortium. A framework for human

microbiome research. Nature 2012;486(7402):215-21.

Human Microbiome Project Consortium. Structure, function and diversity

of the healthy human microbiome. Nature 2012;486(7402):207-14.

Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al.

Whole genome sequencing of meticillin-resistant Staphylococcus

aureus. Lancet 2001;357(9264):1225-40.

Huynen MA, Diaz-Lazcoz Y, Bork P. Differential genome display.

Trends Genet 1997;13(10):389-90.

Ludin P, Woodcroft B, Ralph SA, Mäser P. In silico prediction of

antimalarial drug target candidates. Int J Parasitol Drugs drug Resist

;2:191-9.

Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC.

Putative drug and vaccine target protein identification using

comparative genomic analysis of KEGG annotated metabolic pathways

of Mycoplasma hyopneumoniae. Genomics 2013;102(1):47-56.

Chhabra G, Sharma P, Anant A, Deshmukh S, Kaushik H, Gopal K,

et al. Identification and modeling of a drug target for Clostridium

perfringens SM101. Bioinformation 2010;4(7):278-89.

Rathi B, Sarangi AN, Trivedi N. Genome subtraction for novel target

definition in Salmonella typhi. Bioinformation 2009;4(4):143-50.

Narayan Sarangi A, Aggarwal R, Rahman Q, Trivedi N. Subtractive

genomics approach for in silico identification and characterization of

novel drug targets in Neisseria meningitidis serogroup B. J Comput Sci

Syst Biol 2009;2:255-8.

Sharma V, Gupta P, Dixit A. In silico identification of putative drug

targets from different metabolic pathways of Aeromonas hydrophila. In

Silico Biol 2008;8(3-4):331-8.

Dutta A, Singh SK, Ghosh P, Mukherjee R, Mitter S, Bandyopadhyay

D. In silico identification of potential therapeutic targets in the human

pathogen Helicobacter pylori. In Silico Biol 2006;6(1-2):43-7.

Koonin EV. How many genes can make a cell: The minimal-gene-set

concept. Annu Rev Genomics Hum Genet 2000;1:99-116.

Gerdes S, Edwards R, Kubal M, Fonstein M, Stevens R, Osterman A.

Essential genes on metabolic maps. Curr Opin Biotechnol

;17(5):448-56.

Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P.

Predicting conserved essential genes in bacteria: In silico identification

of putative drug targets. Mol Biosyst 2010;6(12):2482-9.

Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future

prospects of antivirulence therapies. Nat Rev Microbiol 2008;6(1):17-27.

Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation

of novel drug targets. Nat Rev Drug Discov 2011;10(8):579-90.

Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB. Computational

analysis of Plasmodium falciparum metabolism: Organizing

genomic information to facilitate drug discovery. Genome Res

;14(5):917-24.

Campbell SF. Science, art and drug discovery: A personal perspective.

Clin Sci (Lond) 2000;99(4):255-60.

Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL,

et al. Three-dimensional structure of the bacterial cell wall

peptidoglycan. Proc Natl Acad Sci U S A 2006;103(12):4404-9.

Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT,

et al. Staphylococcus aureus survives with a minimal peptidoglycan

synthesis machine but sacrifices virulence and antibiotic resistance.

PLoS Pathog 2015;11(5):e1004891.

Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H, Boniface A,

et al. Specificity determinants for lysine incorporation in Staphylococcus

aureus peptidoglycan as revealed by the structure of a MurE enzyme

ternary complex. J Biol Chem 2013;288(46):33439-48.

Aarsman ME, Piette A, Fraipont C, Vinkenvleugel TM, NguyenDistèche

M, den Blaauwen T.

Maturation of the Escherichia

coli

divisome

occurs in two steps. Mol Microbiol 2005;55(6):1631-45.

Lutkenhaus J, Addinall SG. Bacterial cell division and the Z ring. Annu

Rev Biochem 1997;66:93-116.

Pichoff S, Lutkenhaus J. Tethering the Z ring to the membrane through

a conserved membrane targeting sequence in FtsA. Mol Microbiol

;55(6):1722-34.

Bork P, Sander C, Valencia A. An ATPase domain common to

prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat

shock proteins. Proc Natl Acad Sci U S A 1992;89(16):7290-4.

Ojima I, Kumar K, Awasthi D, Vineberg JG. Drug discovery targeting

cell division proteins, microtubules and FtsZ. Bioorg Med Chem

;22(18):5060-77.

Chène P. ATPases as drug targets: Learning from their structure. Nat

Rev Drug Discov 2002;1(9):665-73.

Published

01-10-2016

How to Cite

Zaveri, K., and K. Patnala. “SCREENING OF PUTATIVE THERAPEUTIC CANDIDATES IN SUPERBUG (STAPHYLOCOCCUS AUREUS): A SYSTEMATIC IN SILICO APPROACH”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 8, Oct. 2016, pp. 283-91, doi:10.22159/ajpcr.2016.v9s2.13852.

Issue

Section

Original Article(s)