THE EFFECT OF ALPHA-MANGOSTIN IN BALANCING THE RATIO OF CYTOKINES PRO-AND ANTI-INFLAMMATION-GAMMA (IFN-γ/IL-10) AND SEVERITY OF THE DISEASE IN MICE INFECTED WITH MYCOBACTERIUM TUBERCULOSIS MULTIDRUG-RESISTANT

Authors

  • Dyan Kunthi Nugrahaeni Diponegoro University Semarang Indonesia
  • Suharyo Hadisaputro
  • Ari Suwondo
  • Edi Dharmana

DOI:

https://doi.org/10.22159/ajpcr.2016.v9s3.14544

Abstract

ABSTRACT
Objective: The objective of this study was observed to measure the effect of alpha-mangostin in balancing the ratio of interferon-gamma (IFN-γ) and
interleukin-10 (IL-10), and the severity of the disease in mice which infected with Mycobacterium tuberculosis multidrug-resistant (TB-MDR).
Method: Infected BALB/c mice were consisted of five groups: Treated with anti-TB drugs+α-mangostin, treated with anti-TB drugs, given α-mangostin
during treatment, and control group. Cytokine levels of culture supernatant of spleen cells were measured by enzyme-linked immunosorbent assay.
The number of bacterial colonies was derived from a primary cell culture of bronchoalveolar lavage. Statistical analysis was performed with Anova,
Kruskal-Wallis test and correlation Pearson, and Spearman-rank test.
Result: Median IFN-γ production was higher in mice, which given with α-mangostin during treatment is 1838.2 pg/ml and control is 1585.5 pg/ml
compared treated with anti-TB drugs+α-mangostin (1312 pg/ml) and anti-TB drugs (1429.3 pg/ml) (p>0.05). The highest result production of median
IL-10 in the 3th group is (465.91 pg/ml) and the lowest in the control group is 195.29 pg/ml, p>0.05. Median IFN-γ/IL-10 ratio of the 3th group very
low (3.94), it means the 3th group is experienced with severity of TB. Alpha-mangostin was decreased in severity of disease based on the number of
TB-MDR bacterial colonies (p≤0.05).
Conclusion: α-mangostin have an effect on the balancing IFN-γ/IL-10 ratio and reduce a severity of TB-MDR with using immunomodulator.
Keywords: Tuberculosis multidrug-resistant, Alpha-mangostin, Interferon-γ/interleukin-10 ratio, Number of tuberculosis multidrug-resistant
bacterial colonies.

Downloads

Download data is not yet available.

References

WHO. Global Tuberculosis Report 2013. Geneva: World Health Organization; 2013.

WHO. Tuberculosis Profile. Geneva: World Health Organization; 2014.

van Crevel R, Ottenhoff TH, van der Meer JW. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 2002;15(2):294-309.

Baratawidjaja K, Rengganis I. Imunologi Dasar. 12th ed. Jakarta: Balai Penerbit Fakultas Kedokteran Universitas Indonesia; 2014.

Masood KI, Rottenberg ME, Salahuddin N, Irfan M, Rao N, Carow B, et al. Expression of M. Tuberculosis-induced suppressor of cytokine signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis. BMC Infect Dis 2013;13:13.

Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 2015;264(1):182-203.

Preeti S, Pradeep K, Rachna S, Kumar AV. Futuristic scope of biomarkers in tuberculosis. Asian J Pharm Clin Res 2015;8(4):248-50.

Murphy K. Janeway’s Immuno Biology. 8th ed. New York, USA: Garland Sciences, Tailor & Francis Group, LLC and Informa Bussines; 2011.

Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, et al. Nitric oxide modulates interleukin-1beta and tumor necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am J Respir Crit Care Med 2000;161(1):199-2.

Shams H, Wizel B, Weis SE, Samten B. Contribution of CD8(+) T cells to gamma interferon production in human tuberculosis. Infect Immun 2001;69(5):3497-501.

Redford P, Murray P, Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 2011;4(3):261-70.

Ansari A, Talat N, Jamil B, Hasan Z, Razzaki T, Dawood G, et al. Cytokine gene polymorphisms across tuberculosis clinical spectrum in Pakistani patients. PLoS One 2009;4(3):e4778.

Ufimtseva E. Mycobacterium-host cell relationships in granulomatous lesions in a mouse model of latent tuberculous infection. Biomed Res Int 2015;2015:948131.

Sahiratmadja E, Alisjahbana B, De Boer T, Adnan I, Maya A, Danusantoso H, et al. Dynamic changes in pro-and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun 2007;75(2):820-9.

Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS One 2015;11(1):e1004603.

Silva MM, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: An unsuccessful host defense mechanism providing a safety shelter for the bacteria? Clin Dev Immunol 2012;2012:139127.

Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, et al. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 2003;51(7):857-9.

Gutierrez-Orozco F, Failla ML. Biological activities and bioavailability of mangostin xanthones: A critical review of the current evidence. Nutrients 2013;5(8):3163-83.

Tang YP, Li PG, Kondo M, Ji HP, Kou Y, Ou B. Effect of a mangostin dietary supplement on human immune function: A randomized, double-blind, placebo-controlled trial. J Med Food 2009;12(4):755-63.

Sudta P, Jiarawapi P, Suksamrarn A, Hongmanee P, Suksamrarn S. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs. Chem Pharm Bull (Tokyo) 2013;61(2):194-203.

Koh J, Lin S, Aung TT, Lim F, Zou H, Bai Y, et al. Amino acid modified xanthone derivatives: Novel, highly promising membrane-active antimicrobials for multidrug-resistant gram-positive bacterial infections. J Med Chem 2015;58(2):739-52.

Chen LG, Yang LL, Wang CC. Anti-inflammatory activity of mangosteens from Garcinia mangostana. Food Chem Toxicol 2008;46(2):688-93.

Koh J, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, et al. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta 2013;1828(2):834-44.

Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y. Alpha-Mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 Cells. J Pharmacol Sci 2004;95(1):33-40.

Song J, Yang H, Lee J, Kwon S, Jung KJ, Heo JD, et al. Standardization of bronchoalveolar lavage method based on suction frequency number and lavage fraction number using rats. Toxicol Res 2010;26(3):203-8.

Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 2007;179(4):2509-19.

Cavalcanti YV, Brelaz MC, Neves JK, Ferraz JC, Pereira VR. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med 2012;2012:745483.

Marakalala M, Raju R, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 2016;22(5):531-8.

Bai XJ, Liang Y, Yang YR, Li N, Zhang XY, An HR, et al. Immune responses to latent tuberculosis antigen Rv2659c in Chinese populations. J Microbiol Immunol Infect 2015;48(4):381-9.

Abebe M, Kim L, Rook G, Aseffa A, Wassie L, Zewdie M, et al. Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clin Dev Immunol 2011;2011:678570.

Sreerag RS, Dileep C, Sasidharan NK. Antimycobacterail activity of crude extracts produces by Bacillus sp. associated with entomophatogenic nematode. Asian J Pharm Clin Res 2014;6(9):6-8.

Shi R, Sugawara I. Pathophysiology of tuberculosis. Tuberculosis: Current Issues in Diagnosis and Management. Croatia: InTech; 2013. p. 127-38.

Published

01-12-2016

How to Cite

Nugrahaeni, D. K., S. Hadisaputro, A. Suwondo, and E. Dharmana. “THE EFFECT OF ALPHA-MANGOSTIN IN BALANCING THE RATIO OF CYTOKINES PRO-AND ANTI-INFLAMMATION-GAMMA (IFN-γ/IL-10) AND SEVERITY OF THE DISEASE IN MICE INFECTED WITH MYCOBACTERIUM TUBERCULOSIS MULTIDRUG-RESISTANT”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 9, Dec. 2016, pp. 273-7, doi:10.22159/ajpcr.2016.v9s3.14544.

Issue

Section

Original Article(s)