SUBSTRATE CARRIERS FOR C-1(2)-DEHYDROGENATION OF 6-METHYLENE ANDROSTENEDIONE TO EXEMESTANE BY GROWING AND IMMOBILIZED ARTHROBACTER SIMPLEX NCIM 2449

Authors

  • Prachi Patil School of Pharmacy, Devi Ahilya University, Indore.
  • Rajesh Sharma Devi Ahilya University, Ring Road, Indore-452001
  • Tushar Banerjee Devi Ahilya University, Indore-452001
  • Shridhar Patil Devi Ahilya University, Indore-452001

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i2.15861

Abstract

Objective: Permeability of hydrophobic steroid substrates across cell membrane is a critical factor during microbial bioconversion. To increase substrate intake, the feasibility of some organic solvents and emulsifiers as substrate carrier on the bioconversion of 6-methylene androstenedione to exemestane was assessed.

Methods: Androstenedione, a commonly available steroid precursor, was chemically converted 6-methylene androstenedione. The time course of exemestane accumulation was estimated after addition of 6-methylene androstenedione dissolved in some organic solvents or dispersed with emulsifiers by growing and immobilized cells of Arthrobacter simplex NCIM 2449 in shake flask cultures.  

Results: The use of substrate carriers for addition of 6-methylene androstenedione enhanced the bioconversion several folds. With growing bacterium in triplicate flasks, a peak mol % bioconversion recorded was- ethanol (67.25, 72 h); soybean oil + tween 80 (50.37, 48 h); acetone (38.84, 48 h); soybean oil (38.36, 48 h); lecithin (32.73, 48 h), methanol (32.71, 48 h) and tween 80 (10.37, 48 h). As compared to the growing cells, the bioconversion with Ca-alginate immobilized cells was delayed and peak mol % bioconversion was recorded as ethanol (60.78, 120 h); soybean oil + tween 80 (42.98, 120 h);  methanol (40.50,  72 h);  soybean oil (38.36, 48 h);  acetone (31.18, 72h ) and lecithin (33.67, 120 h); tween 80 (13.87, 120 h).

Conclusion: The use of substrate carriers for addition of 6-methylene androstenedione increased the permeability of substrate and may be used to increase the yield of exemestane and reduce incubation time.

Downloads

Download data is not yet available.

Author Biographies

Prachi Patil, School of Pharmacy, Devi Ahilya University, Indore.

Research Scholar, School of Pharmacy, Devi Ahilya University, Indore

Rajesh Sharma, Devi Ahilya University, Ring Road, Indore-452001

Professor & Head, School of Pharmacy,

Tushar Banerjee, Devi Ahilya University, Indore-452001

Assistant Professor, School of Life Sciences

Shridhar Patil, Devi Ahilya University, Indore-452001

Emeritus fellow (UGC), School of Life Sciences.

References

Brueggemeier RW, Hackett JC, Diaz-Cruz ES. Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 2005;26(3):331-45.

Goss PE, Ingle JN, Alés-Martínez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J, et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 2011;364(25):2381-91.

Trédan O, Follana P, Moullet I, Cropet C, Trager-Maury S, Dauba J, et al. A phase III trial of exemestane plus bevacizumab maintenance therapy in patients with metastatic breast cancer after first-line taxane and bevacizumab: A GINECO group study. Ann Oncol

;27(6):1020-9.

Agarwal VK, Singh MK, Patel AM, Solanki K. Process for preparing aromatase inhibitor exemestane. US Patent, 8288571 B2; 2012.

Buzzetti F, Barbugian N, Lombardi P, di Salle E. 6-substituted androsta-

,4-diene-3,17-diones. US Patent 4808616; 1989.

Longo A, Lombardi P. Process for the preparation of methylene derivatives of androsta-1,4-diene-3,17-dione. US Patent 4876045;

Kunnen K, Stehle NW, Weis SW, Pascone JM, Pariza RJ, Van Ornum SG, et al. Exemestane and its intermediates and methods of making the same. WO Patent 2005070951; 2005.

Agarwal VK, Singh MK, Patel AM, Solanki K. Process for preparing aromatase inhibitor exemestane. PCT Patent WO 2009/093262 A2;

Marcos-Escribano A, Bermejo A, Bonde-Larsen FA, Retuerto AL, Sierra IH. 1,2-dehydrogenation of steroidal 6-methylen derivatives. Synthesis of exemestane. Tetrahedron 2009;65(36):7587-90.

Hocknull MD, Lilly MD. Stability of the steroid Δ1-dehydrogenation system of Arthrobacter simplex in organic solvent-water two liquid phase environments. Enzyme Microb Technol 1988;10(11):669-74.

Vlahov R, Pramatarova V, Spassov G, Suchodolskaya GV, Koshcheenko KA. Transformation of microcrystalline hydrocortisone by free and immobilized cells of Arthrobacter simplex. Appl Microbiol Biotechnol 1990;33(2):172-5.

Smolders AJ, Pinheiro HM, Noronha P, Cabral JM. Steroid bioconversion in a microemulsion system. Biotechnol Bioeng 1991;38(10):1210-7.

Krook MA, Hewitt BD. Process to prepare exemestane. PCT Patent

WO 01/04342; 2001.

Sukhodolskaya GV, Fokina VV, Savinova TS, Shutov AA, Lukashev NV, Donova MV. Combined chemical and microbiological synthesis of exemestane from sitosterol. J Biotechnol 2010;150 Suppl 1:189.

Savinova TS, Lukashev NV, Sukhodolskaya GV, Donova MV, Fokina VV, Shutov AA, et al. Method for obtaining 6- methyleneandrost-

-ene-3,17-dione and obtaining of 6-methylene androsta-1,4- diene-3,17-dione (exemestane) from 6- methyleneandrost-4-ene-3,17- dione thereof. Russian Patent 2425052; 2011.

Luo J, Ning J, Wang Y, Cheng Y, Zheng Y, Shen Y, et al. The effect of ethanol on cell properties and steroid 1-en-dehydrogenation biotransformation of Arthrobacter simplex. Biotechnol Appl Biochem

;61(5):555-64.

Pendharkar GB, Anjum, SD, Patil S. Enhanced biotransformation of phytosterols, a byproduct of soybean refineries, to a key intermediate used for synthesis of steroidal drugs. Asian J Pharm Clin Res

;7(4):178-80.

Vadalkar K, Gupta FC, Bhat HK, Chopra CL. Bioconversion of pregnenolone to ADD by Arthrobacter simplex. Indian J Exp Biol

;18:245-8.

Somal P, Chopra CL. Microbial conversion of steroids II:

α-hydroxylation by fungal spores. Res Ind 1982;27:170-3.

Pinheiro HM, Cabral JM. Effects of solvent molecular toxicity and

microenvironment composition on the Δ1-dehydrogenataon activity of

Arthrobacter simplex cells. Biotechnol Bioeng 1991;37(2):97-102.

Phase N, Patil S. Natural oils are better than organic solvents for the conversion of soybean sterols to 17-ketosteroids by Mycobacterium fortuitum. World J Microbiol Biotechnol

;10(2):228-9.

Xu YG, Guan YX, Wang HQ, Yao SJ. Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system. Appl Biochem Biotechnol 2014;174(2):522-33.

Wang ZF, Huang YL, Rathman JF, Yang ST. Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17- dione and androsta-4-ene-3,17-dione. J Chem Technol Biotechnol

;77(12):1349-57.

Luthra U, Khadpekar S, Trivedi A, Shetty A, Kumar H. Biotransformation of 4-androstene-3,17-dione by Nocardioides simplex. World J Pharm Pharm Sci 2015;4(11):935-43.

Longo A, Lombardi P. Synthesis of 6-methylene derivatives of androsta-1,4-diene-3,17-dione. U S Patent 4990635; 1991.

Aggarwal AK, Jain AK, Chidambaram VS, Wadhawa L. Process for the preparation of exemestane. PCT Patent WO 078811 A2; 2010.

Kierstan M, Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol Bioeng

;19(3):387-97.

Yuvuz B, Bilensoy E, Sumnu M. Analytical method validation for

HPLC assay of oral anticancer drug exemestane. FABAD J Pharm Sci

;32:15-22.

AQ3 29. Luo JM, Song Y, Wang JF, Ning J, Cheng YX, Cheng, et al. Study on the

effects of different kinds of organic solvents on C 1, 2 dehydrogenation reaction by the analysis of Arthrobacter simplex cell characters. Chem Bioeng 2012;29:49-53.

Shen Y, Liang J, Li H, Wang M. Hydroxypropyl-ß-cyclodextrin- mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex. Appl Microbiol Biotechnol

;99(1):387-97.

Avramova T, Spassova D, Mutafov S, Momchilova S, Boyadjieva L, Damyanova B, et al. Effect of tween 80 on 9α-steroid hydroxylating activity and ultrastructural characteristics of Rhodococcus sp. Cells. World J Microbiol Biotechnol 2010;26:1009-14.

Chen R, Li G, Zhang J, Liu F, Peng ZH, Deng L. Study on microbial transformation of exemestane in two-phase system. J Nat Sci Hunan Norm Univ 2010;2:24.

Li G, Li F, Deng L, Fang X, Zou H, Xu K, et al. Increased yield of biotransformation of exemestane with ß-cyclodextrin complexation technique. Steroids 2013;78(11):1148-51.

Montes MC, Magaña I. Delta’-dehydrogenation of steroids by Arthrobacter simplex immobilized in calcium polygalacturonate beads. J Ind Microbiol 1991;8(4):259-64.

Hocknull MD, Lilly MD. The use of free and immobilised Arthrobacter simplex in organic solvent/aqueous two-liquid-phase reactors. Appl Microbiol Biotechnol 1990;33(2):148-53.

Pinheiro HM, Cabral JM. Activity and stability of an entrapped-cell system for the Δ1-dehydrogenation of steroids in organic media. Biotechnol Bioeng 1992;40(9):1123-7.

Published

01-02-2017

How to Cite

Patil, P., R. Sharma, T. Banerjee, and S. Patil. “SUBSTRATE CARRIERS FOR C-1(2)-DEHYDROGENATION OF 6-METHYLENE ANDROSTENEDIONE TO EXEMESTANE BY GROWING AND IMMOBILIZED ARTHROBACTER SIMPLEX NCIM 2449”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 2, Feb. 2017, pp. 392-6, doi:10.22159/ajpcr.2017.v10i2.15861.

Issue

Section

Original Article(s)