CURCUMINOID AND TOXICITY LEVELS OF ETHANOL EXTRACT OF JAVANESE GINGER (Curcuma xanthorriza) ON BRINE SHRIMP (Artemia salina) LARVAE AND ZEBRAFISH (Danio rerio) EMBRYOS

Authors

  • Gustini Syahbirin Bogor Agricultural University, Indonesia
  • Nurfadilawati Mumuh Bogor Agricultural University, Indonesia
  • Kusdiantoro Mohamad Bogor Agricultural University, Indonesia

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i4.16429

Abstract

Objective: This study was aimed at determining the levels of curcuminoids and analyzing the toxicity of ethanol extracts of Javanese ginger.

Methods: Curcuminoid levels were determined using high-performance liquid chromatography, while the toxicity tests were done on larva of brine shrimp (Artemia salina) by using a brine shrimp lethality test (BSLT) method and embryos of zebrafish (Danio rerio) using a zebrafish embryo acute toxicity (ZFET) method.

 

Results: The level curcuminoid of ethanol extracts was 10.5% dry wt., consisting of curcumin at the highest percentage (68.06%) followed by
desmethoxycurcumin (24.6%) and bisdemethoxycurcumin (1.41%). In BSLT method, the lethal concentration 50% values (LC) value of our ethanol extract was 238 ppm, whereas in ZFET method, the LC value at 96 hours after fertilization was 80 ppm. The ethanol extract of ginger caused major malformations of the pericardial edema of zebrafish embryos at a concentration of 100 ppm. 50

Conclusion: The ethanol extract of Curcuma xanthorrhiza from Bogor contained curcuminoids consisting of curcumin, desmethoxycurcumin, and bisdemethoxycurcumin, with acute toxicity, caused major malformations on the pericardial edema in zebrafish embryos.

Keywords: Curcuma xanthorrhiza, Curcuminoid, Toxicity, Zebrafish embryo acute toxicity.50

Downloads

Download data is not yet available.

Author Biography

Gustini Syahbirin, Bogor Agricultural University, Indonesia

Department and rank

References

Mary HP, Susheela GK, Jayasree S, Nizzy AM, Rajagopal B, Jeeva S. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pac J Trop Biomed 2012;2(2):S637-40.

Nurcholis W, Ambarsari L, Sari NL, Darusman LK. Curcuminoid contents, antioxidant and anti-inflammatory activities of Curcuma xanthorrhiza Roxb. and Curcuma domestica Val. promising lines from Sukabumi of Indonesia. Di dalam: Prosiding Seminar Nasional Kimia Unesa 2012. 2012a; Febraury, 25. Surabaya. Indonesia.

Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules 2011;16(4):3433-43.

Devaraj S, Ismail S, Ramanathan S, Yam MF. In vivo toxicological investigation of standardized ethanolic extract of Curcuma xanthorrhiza Roxb. rhizome. J Nat Prod Plant Resour 2010;3(1):67-73.

Cheah YH, Nordin FJ, Sarip R, Tee TT, Azimahtol HLP, Sirat HM, et al. Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231. Cancer Cell Int 2009;9:1-12.

Ruslay S, Abas F, Shaari K, Zainal Z, Maulidiani, Sirat H, et al. Characterization of the components present in the active fractions of health gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC-DAD-ESIMS. Food Chem 2007;104(3):1183-91.

Jarikasem S, Thubthimthed S, Chawananoraseth K, Suntorntanasat T. Essential oils from three Curcuma species collected in Thailand. Acta Hortic (ISHS) 2005;3(675):37-40.

Itokawa H, Shi Q, Akiyama T, Morris-Natschke SL, Lee KH. Recent advances in the investigation of curcuminoids. Chin Med 2008;3:1-13.

Truong L, Harper SL, Tanguay RL. Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 2011;691:271-79.

Kari G, Rodeck U, Dicker AP. Zebrafish: An emerging model system for human disease and drug discovery. Clin Pharmacol Ther 2007;82(1):70-80.

Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 2005;86:6-19.

Srijanto B, Syahbirin G. Optimasi ekstraksi kurkumin dari temu lawak (Curcuma xanthorrhiza Roxb.) secara batch. Di dalam: Prosiding Seminar Nasional Teknik Kimia Universitas Parahyangan 2007; November, 22; Bandung, Indonesia.

Jayaprakasha GK, Rao LJ, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 2002;50(13):3668-72.

Meyer BN, Ferrigni NR, Putman JE, Jacobson LB, Nichol DE, McLaughlin JL. Brine shrimps: A convenient general bioassay for active plant constituent. Planta Med 1982;45(5):31-4.

The Organization for Economic Co-operation and Development. OECD Guidelines for The Testing of Chemicals No. 236. Fish Embryo Acute Toxicity (FET) Test. Paris, FR: OECD; 2013.

Panigrahi S, Hirlekar R. A new stability-indicating RP-HPLC method for determination of curcumin: An application to nanoparticulate formulation. Int J Pharm Pharm Sci 2016;8(12):145-55.

Mangunwardoyo W, Deasywaty, Usia T. Antimicrobial and identification of active compound Curcuma xanthorrhiza Roxb. IJBAS IJENS 2012;12(1):69-78.

Nurcholis W, Priosoeryanto BP, Purwakusumah ED, Katayama T, Suzuki T. Antioxidant, cytotoxic activities and total phenolic content of four Indonesian medicinal plants. J Valensi 2012b;2(4):501-10.

Athira GK, Jyothi AN. Preparation and characterization of curcumin

Fig. 2: Morphology of normal zebrafish embryo in control group and some abnormalities in ethanol treatment groups: Normal embryo K-24 hpf (a), K-48 hpf (b), tail malformation (72 hpf, 50 ppm) (c), body axis malformation (72 hpf, 100 ppm) (d), pericardial edema (96 hpf, 100 ppm) (e), yolk sac edema (72 hpf, 100 ppm) (f), 48 hpf, 200 ppm treatment (g), 24 hpf 400 and 600 ppm treatment (h). K: Negative control, hpf: Hour(s) post fertilization (bar 300 μm) dh cgbfae loaded cassava starch nanoparticles with improved cellular absorption. Int J Pharm Pharm Sci 2014;6(10):171-6.

Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G. Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab 2009;10(2):116-24.

Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA. Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 2010;89(1):66-77.

Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 2007;225(1):70-9.

Eeden FJ, Granato M, Schach U, Brand M, Seiki MF, Haffter P, et al. Mutation affecting somite formation and patterning in the zebrafish Danio rerio. Development 1996;123:153-64.

Wu JY, Lin CY, Lin TW, Ken CF, Wen YD. Curcumin affects development of zebrafish embryo. Biol Pharm Bull 2007;30(7):1336-9.

Published

01-04-2017

How to Cite

Syahbirin, G., N. Mumuh, and K. Mohamad. “CURCUMINOID AND TOXICITY LEVELS OF ETHANOL EXTRACT OF JAVANESE GINGER (Curcuma Xanthorriza) ON BRINE SHRIMP (Artemia Salina) LARVAE AND ZEBRAFISH (Danio Rerio) EMBRYOS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 4, Apr. 2017, pp. 169-73, doi:10.22159/ajpcr.2017.v10i4.16429.

Issue

Section

Original Article(s)