• Fatemeh Mansouri Department of Medical Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. 2Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.



Prostate cancer, Biomarker, Clinical assay, Molecular assay


To assess the correlation between the clinical and molecular assays in identify early and robust prostate cancer detection. Early detection, management of cancer and decision about the disease are important for beneficial treatment of prostate cancer. We used a computerized search of the Medline/ PubMed databases with the key words prostate cancer, biomarker, and early detection. Clinical management of cancer is facilitated by a conventional test such as prostate-specific antigen and digital rectal exam for application in clinical practice. Although these tests have significantly reduced the mortality with prostate cancer, but have some drawbacks and false positive rate. Fortunately, there are strong correlations between the clinical and molecular assays in identifying early and robust cancer detection, because molecular assays are less invasive and reliable. The use of genetic markers has the potential to providing useful prognostic or predictive information into clinically useful diagnostic tests to improve clinical decision-making and enhance therapeutic success. Different clinical and molecular assays are for detecting prostate cancer and use the biomarkers as potential tumor markers could be a useful predictor in the screening and monitoring to avoid over treatment prostate cancer.


Download data is not yet available.

Author Biography

Fatemeh Mansouri, Department of Medical Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. 2Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.

Department of Medical Immunology and Genetics, Faculty of Medicine


Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Goncalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenetics 2015;7(1):42.

Grönberg H. Prostate cancer epidemiology. Lancet 2003;361(9360):859-64.

Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012;61(6):1079-92.

Xu J, Sun J, Zheng SL. Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 2013;15(3):314-22.

Sherzay N, Chitakar E. Epigenetics: Effect of environmental factors on human genome. Int J Pharm Pharm Sci 2016;8(3):1-6.

Raslau D, Summerfield DT, Abu Dabrh AM, Steinkraus LW, Murad MH. The risk of prostate cancer in pilots: A meta-analysis. Aerosp Med Hum Perform 2015;86(2):112-7.

Ballard T, Lagorio S, De Angelis G, Verdecchia A. Cancer incidence and mortality among flight personnel: A meta-analysis. Aviat Space Environ Med 2000;71(3):216-24.

Buja A, Lange JH, Perissinotto E, Rausa G, Grigoletto F, Canova C, et al. Cancer incidence among male military and civil pilots and flight attendants: An analysis on published data. Toxicol Ind Health 2005;21(10):273-82.

Gupta M, Dahiya J, Marwaha RK, Dureja H. Therapies in cancer treatment: An overview. Int J Pharm Pharm Sci 2015;7(4):1-9.

Oesterling JE. Prostate specific antigen: A critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 1991;145(5):907-23.

Rahman S, Cosmatos H, Dave G, Williams S, Tome M. Predicting pelvic lymph node involvement in current-era prostate cancer. Int J Radiat Oncol Biol Phys 2012;82(2):906-10.

Kim EH, Andriole GL. Prostate-specific antigen-based screening: Controversy and guidelines. BMC Med 2015;13:61.

Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: The next generation of prostate cancer biomarkers. Sci Transl Med 2012;4(127):127rv3.

Behesnilian AS, Reiter RE. Risk stratification of prostate cancer in the modern era. Curr Opin Urol 2015;25(3):246-51.

Hwang SI, Lee HJ. The future perspectives in transrectal prostate ultrasound guided biopsy. Prostate Int 2014;2(4):153-60.

Cotignola J, Leonardi DB, Shahabi A, Acuña AD, Stern MC, Navone N, et al. Glutathione-S-transferase (GST) polymorphisms are associated with relapse after radical prostatectomy. Prostate Cancer Prostatic Dis 2013;16(1):28-34.

Mohiuddin JJ, Baker BR, Chen RC. Radiotherapy for high-risk prostate cancer. Nat Rev Urol 2015;12(3):145-54.

Silva RD, Kim FJ. Focal cryotherapy in low-risk prostate cancer: Are we treating the cancer or the mind? - The cancer. Int Braz J Urol 2015;41(1):5-9.

Knudsen KE, Penning TM. Partners in crime: Deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metab 2010;21(5):315-24.

Bickers B, Aukim-Hastie C. New molecular biomarkers for the prognosis and management of prostate cancer - The post PSA era. Anticancer Res 2009;29(8):3289-98.

Choudhury AD, Eeles R, Freedland SJ, Isaacs WB, Pomerantz MM, Schalken JA, et al. The role of genetic markers in the management of prostate cancer. Eur Urol 2012;62(4):577-87.

Qadri Q, Sameer AS, Shah ZA, Hamid A, Alam S, Manzoor S, et al. Genetic polymorphism of the glutathione-S-transferase P1 gene (GSTP1) and susceptibility to prostate cancer in the Kashmiri population. Genet Mol Res 2011;10(4):3038-45.

Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997;6(9):733-43.

Malik SS, Masood N, Yasmin A. Prostate cancer and glutathione S-transferase deletions. EXCLI J 2015;14:1049-54.

Liu D, Liu Y, Ran L, Shang H, Li D. GSTT1 and GSTM1 polymorphisms and prostate cancer risk in Asians: A systematic review and meta-analysis. Tumour Biol 2013;34(5):2539-44.

Nock NL, Bock C, Neslund-Dudas C, Beebe-Dimmer J, Rundle A, Tang D, et al. Polymorphisms in glutathione S-transferase genes increase risk of prostate cancer biochemical recurrence differentially by ethnicity and disease severity. Cancer Causes Control 2009;20(10):1915-26. 27. Saffari M, Dinehkabodi OS, Ghaffari SH, Modarressi MH, Mansouri F, Heidari M. Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells. Cancer Lett 2009;273(2):316-22.

Miyake H, Muramaki M, Kurahashi T, Takenaka A, Fujisawa M. Expression of potential molecular markers in prostate cancer: Correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol 2010;28(2):145-51.

Verma R, Gupta V, Singh J, Verma M, Gupta G, Gupta S, et al. Significance of p53 and ki-67 expression in prostate cancer. Urol Ann 2015;7(4):488-93.

Jerónimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001;20(37):5195-8.

Balic I, Graham ST, Troyer DA, Higgins BA, Pollock BH, Johnson-Pais TL, et al. Androgen receptor length polymorphism associated with prostate cancer risk in Hispanic men. J Urol 2002;168(5):2245-8.

Dietrich D, Meller S, Uhl B, Ralla B, Stephan C, Jung K, et al. Nucleic acid-based tissue biomarkers of urologic malignancies. Crit Rev Clin Lab Sci 2014;51(4):173-99.

Mojarrad M, Momeny M, Mansuri F, Abdolazimi Y, Tabrizi MH, Ghaffari SH, et al. Autocrine human growth hormone expression leads to resistance of MCF-7 cells to tamoxifen. Med Oncol 2010;27(2):474-80.

Ceder Y. Non-coding RNAs in prostate cancer: From discovery to clinical applications. Adv Exp Med Biol 2016;886:155-70.

Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med 2009;60:167-79.

Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008;27(12):1788-93.

Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-9738. Sukohar A, Herawati H, Witarto AB, Sibero HT, Sutyarso. Comparison of genes expression; MIRNA 146 a, MIR-103, MIR-423-3p, MIR-21, MIR-16 in cell lines HEP-G2 series 1886 and PLC5. Int J Pharm Pharm Sci 2015;7(2):76-9.

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19(1):92-105.

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18(10):997-1006.

Tosoian JJ, Ross AE, Sokoll LJ, Partin AW, Pavlovich CP. Urinary biomarkers for prostate cancer. Urol Clin North Am 2016;43(1):17-38.

Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 2015;67(1):33-41.

Nelson KM, Weiss GJ. MicroRNAs and cancer: Past, present, and potential future. Mol Cancer Ther 2008;7(12):3655-60.

Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110(1):13-21.

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9(6):654-9.

Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67(3):6130-5.

Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 2009;16(3):206-16.

Penney KL, Sinnott JA, Fall K, Pawitan Y, Hoshida Y, Kraft P, et al. mRNA expression signature of Gleason grade predicts lethal prostate cancer. J Clin Oncol 2011;29(17):2391-6.

Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol 2014;24(16):R762-76.

Goto Y, Kurozumi A, Enokida H, Ichikawa T, Seki N. Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 2015;22(3):242-52.

Savad S, Mehdipour P, Miryounesi M, Shirkoohi R, Fereidooni F, Mansouri F, et al. Expression analysis of MiR-21, MiR-205, and MiR- 342 in breast cancer in Iran. Asian Pac J Cancer Prev 2012;13(3):873-7.

Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM, et al. MiR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 2012;187(4):1466-72.

Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007;282(19):14328-36.

Qiu X, Dong S, Qiao F, Lu S, Song Y, Lao Y, et al. HBx-mediated miR-21 upregulation represses tumor-suppressor function of PDCD4 in hepatocellular carcinoma. Oncogene 2013;32(27):3296-305.

Yu JJ, Xia SJ. Novel role of microRNAs in prostate cancer. Chin Med J (Engl) 2013;126(15):2960-4.

Ma X, Choudhury SN, Hua X, Dai Z, Li Y. Interaction of the oncogenic miR-21 microRNA and the p53 tumor suppressor pathway. Carcinogenesis 2013;34(6):1216-23.

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: A retrospective study. Lancet Oncol 2011;12(3):245-55.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103(7):2257-61.

Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008;68(15):6162-70.

Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011;128(3):608-16.

Szczyrba J, Löprich E, Wach S, Jung V, Unteregger G, Barth S, et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 2010;8(4):529-38.



How to Cite

Mansouri, F. “THE ROLE OF THE CLINICAL AND MOLECULAR ASSAYS IN PROSTATE CANCER DETECTION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 6, June 2017, pp. 11-15, doi:10.22159/ajpcr.2017.v10i6.17490.



Review Article(s)