CHITOSAN MICROSPHERES FOR THE DELIVERY OF CHEMOTHERAPEUTIC AGENTS: PACLITAXEL AS A MODEL
DOI:
https://doi.org/10.22159/ajpcr.2017.v10i8.18765Keywords:
Chitosan, Paclitaxel, Microspheres, Drug deliveryAbstract
Chitosan has unique physicochemical and biological features that suggest it as a good candidate for the development of safe and effective drug delivery systems. Linking drug molecules with chitosan through a functional spacer enables formulation of prodrugs that have appropriate pharmacological activities at specific desired sites. The development of formulations of targeted delivery systems for the chemotherapeutic agents, especially those with unfavorable pharmacokinetic features, like paclitaxel (PTX), can potentially alleviate the systemic cytotoxicity as well as directing therapy to the specific lesions. The main aim of this literature review is to critically evaluate the use of chitosan microspheres as a drug delivery system to enhance PTX distribution and efficacy in specific targeted sites.
Downloads
References
Panchagnula R. Pharmaceutical aspects of paclitaxel. Int J Pharm 1998;172:1-15.
Walbert T, Gilbert MR, Groves MD, Puduvalli VK, Yung WK, Conrad CA, et al. Combination of 6-thioguanine, capecitabine, and celecoxib with temozolomide or lomustine for recurrent high-grade glioma. J Neurooncol 2011;102(2):273-80.
Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 1983;52(6):997-1007.
Patel MP, Patel RR, Patel JK. Chitosan mediated targeted drug delivery system: A review. J Pharm Pharm Sci 2010;13(4):536-57.
Langer R. Drug delivery and targeting. Nature 1998;392:5-10.
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: New estimates of drug development costs. J Health Econ 2003;22(2):151-85.
Weng L, Rostamzadeh P, Nooryshokry N, Le HC, Golzarian J. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 2013;9(6):6823-33.
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011;3(3):1377-97.
Acharya G, Shin CS, Vedantham K, McDermott M, Rish T, Hansen K, et al. A study of drug release from homogeneous PLGA microstructures. J Control Release 2010;146(2):201-6.
Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004;61(19-20):2549-59.
Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 2012;159(1):14-26.
Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975;51:135-53.
Ventura CA, Cannavà C, Stancanelli R, Paolino D, Cosco D, La Mantia A, et al. Gemcitabine-loaded chitosan microspheres. Characterization and biological in vitro evaluation. Biomed Microdevices 2011;13(5):799 807.
Gupta V, Karar PK. Optimization of process variables for the preparation of chitosan-alginate nanoparticles. Int J Pharm Pharm Sci 2011;3(2):78 80.
Dang Q, Liu C, Wang Y, Yan J, Wan H, Fan B. Characterization and biocompatibility of injectable microspheres-loaded hydrogel for methotrexate delivery. Carbohydr Polym 2016;136:516-26.
Zhang X, Chen F, Ni J. A novel method to prepare magnetite chitosan microspheres conjugated with methotrexate (MTX) for the controlled release of MTX as a magnetic targeting drug delivery system. Drug Deliv 2009;16(5):280-8.
Ganguly K, Kulkarni AR, Aminabhavi TM. In vitro cytotoxicity and in vivo efficacy of 5-fluorouracil-loaded enteric-coated PEG-cross-linked chitosan microspheres in colorectal cancer therapy in rats. Drug Deliv 2015;1:1-14.
Park JM, Lee SY, Lee GH, Chung EY, Chang KM, Kwak BK, et al. Design and characterization of doxorubicin-releasing chitosan microspheres for anti-cancer chemo-embolization. J Microencapsul 2012;29(7):695-705.
Akbuga J, Bergisadi N. Effect of formulation variables on cis-platin loaded chitosan microsphere properties. J Microencapsul 1999;16(6):697-703.
Wang YM, Sato H, Adachi I, Horikoshi I. Optimization of the formulation design of chitosan microspheres containing cisplatin. J Pharm Sci 1996;85(11):1204-10.
Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release 2003;89:151-65.
Chakravarthi SS, Robinson DH. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int J Pharm 2011;409(1-2):111-20.
Martin V. Overview of paclitaxel (TAXOL). Semin Oncol Nurs 1993;9 4 Suppl 2:2-5.
Vilos C, Velasquez LA. Therapeutic strategies based on polymeric microparticles. J Biomed Biotechnol 2012;2012:672760.
Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 2008;127(1):41-9.
Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan forgene delivery. J Control Release 2005;103(1):235-43.
Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006;111(1-2):107-16.
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-6.
Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997;386(6623):410-4.
Kim K, Pack DW. Microspheres for the delivery. Biomembr Biomed Nanotechnol 2006;1:19-50.
Kumar SK, Reddy JP, Sekhar CK. A review on microsphere for novel drug delivery system. J Pharm Res 2012;5(1):420-4.
Ando S, Putnam D, Pack DW, Langer R. PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 1999;88(1):126-30.
Amsden BG, Goosen M. An examination of the factors affecting the size, distribution, and release characteristics of polymer microbeads made using electrostatics. J Control Release 1997;43:183-96.
Leon L, Herbert AL, Joseph LK. The Theory and Practice of Industrial Pharmacy. 3rd ed. UK: Varghese Publishing House; 1990. p. 414-5.
Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci 2001;90(1):38-46.
Nithyashanthi C, Gupta R, Mahato AK. Traditional and emerging applications of microspheres. Int J PharmTech Res 2010;2(1):675-81.
Hemant KS, Raizaday A, Sivadasu P, Hemanth-Kumar S. Cancer nanotechnology: Nanoparticulate drug delivery for the treatment of cancer Int J Pharm Pharm Sci 2015;7(3):40-6.
Bansal V, Sharma KP, Sharma N, Pal OP, Malviya R. Application of chitosan and chitosan derivatives in drug delivery. Adv Biol Res 2011;5(1):28-37.
Hirano S, Nagano N. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agric Biol Chem 1989;53:3065-6.
Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 1992;78(1):43-8.
Sanford PA. Chitosan: Commercial uses and potential applications. In: Skjak G, Anthonsen T, Sanford P, editors. Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. London, UK: Elsevier; 1989. p. 51-69.
Kas HS. Chitosan: Properties, preparations and application to microparticulate systems. J Microencapsul 1997;14(6):689-711.
Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv 2005;12:41-57.
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007;18(3):241-68.
Bodnar M, Hartmann JF, Borbely J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules 2005;6(5):2521-7.
Genta I, Costantini M, Asti A, Conti B, Montanari L. Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydr Polym 1998;36(2-3):81-8.
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70(1-2):1-20.
Hassan EE, Gallo JM. Targeting anticancer drugs to the brain. I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target 1993;1(1):7-14.
Wani MC, Taylor HL, Wall ME, Coeggon P, McPhail AT. The discovery of camptothecin and taxol. J Am Chem Soc 1971;93(9):2325-7.
Rowinsky EK, Cazenave LA, Donehower RC. Taxol: A novel investigational antimicrotubule agent. J Natl Cancer Inst 1990;82(15):1247-59.
Manfredi JJ, Horwitz SB. Taxol: An antimitotic agent with a new mechanism of action. Pharmacol Ther 1984;25(1):83-125.
Spencer CM, Faulds D. Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 1994;48(5):794-847.
Straubinger RM. Biopharmaceutics of paclitaxel (taxol): Formulation, activity and pharmacokinetics. In: Suffness M, editor. Science and Applications. Boca Raton: CRC Press; 1996. p. 237-58.
Barbara E. The Effect of Excipients on Pharmacokinetic Parameters of Parenteral Drugs. 2005, PhD Thesis, University of Basel, Faculty of Science.
Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001;37(13):1590-8.
Londhe V, Nagarsenker M. Comparison between hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone as carriers for carbamazepine solid dispersions. Indian J Pharm Sci 1999;61:237-40.
Bettinetti G, Gazzaniga A, Mura P, Giordano F, Setti M. Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev Ind Pharm 1992;18:39-53.
Ooya T, Lee J, Park K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 2003;93(2):121-7.
Lv PP, Wei W, Yue H, Wang LY, Ma GH. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 2011;12(12):4230-9.
Greenwald RB, Pendri A, Bolikal D, Gilbert CW. Highly water soluble taxol derivatives: 2’ polyethylene glycol esters as potential prodrugs. Bioorg Med Chem Lett 1994;4:2465-70.
Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: Water soluble taxol 2’-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem 1996;39(2):424-31.
Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int J Pharm 2007;338(1-2):317-26.
Konno T, Watanabe J, Ishihara K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomed Mater Res A 2003;65(2):209 14.
Dordunoo SK, Jackson JK, Arsenault LA, Oktaba AM, Hunter WL, Burt HM. Taxol encapsulation in poly(epsilon-caprolactone) microspheres. Cancer Chemother Pharmacol 1995;36(4):279-82.
Al-shdefat R, Yassin AB, Anwer K, Alsarra I. Preparation and characterization of biodegradable paclitaxel loaded chitosan microparticles. Dig J Nanomater Biostruct 2012;7(3):1139-47.
Mita AC, Olszanski AJ, Walovitch RC, Perez RP, MacKay K, Tuck DP, et al. Phase I and pharmacokinetic study of AI-850, a novel microparticle hydrophobic drug delivery system for paclitaxel. Clin Cancer Res 2007;13(11):3293-301.
Abdulbaqi MR, Maraie NK, Dawood AH. Loading of clarithromycin and paclitaxel on synthesized CDS/NIO nanoparticles as promising nanocarriers. Int J Pharm Pharm Sci 2016;8(5):322-33.
Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, et al. A thermos-sensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004;57:53-63.
Obara K, Ishihara M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, et al. Controlled release of paclitaxel from photo cross-linked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 2005;110(1):79-89.
Jiang Y, Meng X, Wu Z, Qi X. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydr Polym 2016;144:245-53.
Yang SD, Zhu WJ, Zhu QL, Chen WL, Ren ZX, Li F, et al. Binary-copolymer system based on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J Biomed Mater Res B Appl Biomater 2016. DOI: 10.1002/jbm.b.33636.
Zhang N, Xu X, Zhang X, Qu D, Xue L, Mo R, et al. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy. Int J Pharm 2016;497(1-2):210-21.
Rezazadeh M, Emami J, Hasanzadeh F, Sadeghi H, Minaiyan M, Mostafavi A, et al. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle. Drug Deliv 2016;23(5):1707-17.
Hassan EE, Parish RC, Gallo JM. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res 1992;9(3):390-7.
Singh UV, Udupa N. Methotrexate loaded chitosan and chitin microspheres - In vitro characterization and pharmacokinetics in mice bearing Ehrlich ascites carcinoma. J Microencapsul 1998;15(5):581-94.
Terwogt JM, Nuijen B, Huinink WW, Beijnen JH. Alternative formulations of paclitaxel. Cancer Treat Rev 1997;23(2):87-95.
Wang Y, Li X, Wang L, Xu Y, Cheng X, Wei P. Formulation andpharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int J Nanomedicine 2011;6:1497-507.
Kollipara S, Bende G, Saha RN. Rapid and sensitive liquid chromatographic method for determination of paclitaxel from parenteral formulation and nanoparticles. Indian J Pharm Sci 2010;72(4):465-70.
Ruan G, Feng SS. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 2003;24:5037-44.
Chanchall A, Husain SA, Verma AK. In-vitro physico-chemical evaluation of biopolymeric nanoparticles. J Pharm Res 2012;5(8):4042 4.
Chiou SH, Wu WT, Huang YY, Chung TW. Effects of the characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres. J Microencapsul 2001;18(5):613-25.
Mi FL, Her NL, Kuan CY, Wong TB, Shyu SS. Chitosan tablets for controlled release of theophylline: Effect of polymer-drug wet or dry blending and anionic-cationic interpolymer complex. J Appl Polym Sci 1997;66:2495-505.
Singh DK, Ray AR. Controlled release of glucose through modified chitosan membranes. J Membr Sci 1999;155:107-12.
Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release 2004;97(2):249-57.
Nsereko S, Amiji M. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials 2002;23(13):2723-31.
Wang YM, Sato H, Horikoshi I. In vitro and in vivo evaluation of taxol release from poly(lactic-co-glycolic acid) microspheres containing isopropyl myristate and degradation of the microspheres. J Control Release 1997;49:157-66.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.