DECREASEMENT OF LYSOPHOSPHATIDYLCHOLINE LEVEL, NF-KB EXPRESSION, INTIMA MEDIA THICKNESS AND IMPROVEMENT OF INSULIN RESISTANCE BY DARAPLADIB TREATMENT: IN VIVO STUDIES OF TYPE 2 DIABETES MELLITUS SPRAGUE-DAWLEY RAT MODEL

Authors

  • Titin Andri Wihastuti Department of Biomedicine, Brawijaya University, Malang, Indonesia.
  • Dinda Zahra Putri Andiyani Department of Biomedicine, Brawijaya University, Malang, Indonesia
  • Sri Andarini Department of Biomedicine, Brawijaya University, Malang, Indonesia
  • Teuku Heriansyah Department of Cardiology and Vascular Medicine, Syiah Kuala University, Banda Aceh, Indonesia

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i12.19022

Keywords:

Type 2 Diabetes Mellitus, Inflammation, Insulin Resistance, Atherosclerosis Lipoprotein-associated phospholipase A2

Abstract

Objective: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme with several pro-inflammatory properties that involved in pathogenesis of atherosclerosis, but some investigation shows controversial views regarding its biological role. We examined the effect of selective inhibitor of Lp-PLA2 (darapladib) to the inflammation marker, intima-media thickness (IMT), and insulin resistance (IR) of type 2 diabetes mellitus (T2DM) rat model. This study aimed to measure lysophosphatidylcholine (lyso-PC) in serum and aortic tissue, nuclear factor kappa B (NF-κB) expression, IMT, and IR with darapladib treatment in a T2DM rat model.

Methods: 30 Sprague-Dawley rats were randomly divided into normal group, T2DM group and T2DM with darapladib treatment. Induction of T2DM was done by giving high-fat diet and low dose injection of streptozotocin. Blood glucose level and insulin plasma concentration were measured to calculate IR. 8 weeks and 16 weeks after treatment, we compared lyso-PC level, NF-κB expression, and IMT.

Results: Darapladib significantly decreased lyso-PC level, NF-κB expression, and IMT at two serial treatments. Darapladib treatment group exhibited significant reduction of IR (0.64±0.11 vs. 2.07±0.16, at 8 weeks; and 0.93±0.08 vs. 6.48±0.55 at 16 weeks) compared with T2DM group.

Conclusions: These data suggested that Lp-PLA2 played a role in inflammation process, atherosclerosis, and IR occurring in metabolic disorder.

Downloads

Download data is not yet available.

References

Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of Type 1 and Type 2 diabetes mellitus. J Physiol Pathophysiol 2013;4(4):46-57.

Niskanen L, Turpeinen A, Penttilä I, Uusitupa MI. Hyperglycemia and compositional lipoprotein abnormalities as predictors of cardiovascular mortality in Type 2 diabetes: A 15-year follow-up from the time of diagnosis. Diabetes Care 1998;21(11):1861-9.

Kim TN, Kim S, Yang SJ, Yoo HJ, Seo JA, Kim SG, et al. Vascular inflammation in patients with impaired glucose tolerance and Type 2 diabetes: Analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ Cardiovasc Imaging 2010;39(2):142-8.

Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 2009;61(4):595-603.

Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015;6(4):598-612.

Stafforini DM, Zimmerman GA. Unraveling the PAF-AH/Lp-PLA2 controversy. J Lipid Res 2014;55(9):1811-4.

Hassan M. Stability and SOLID-TIMI 52: Lipoprotein associated phopholipase A2 (Lp-PLA2) as a biomarker or risk factor for cardiovascular disease. Glob Cardiol Sci Pract 2015;2015:6.

van Dijk TH, Laskewitz AJ, Grefhorst A, Boer TS, Bloks VW, Kuipers F, et al. A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice. Lab Anim 2013;47(2):79-88.

Takatera A, Takeuchi A, Saiki K, Morioka I. Blood lysophosphatidylcholine (LPC) levels and characteristic molecular species in neonates: Prolonged low blood LPC levels in very low birth weight infants. Pediatr Res 2007;62:477-82.

Ziegler D. Type 2 diabetes as an inflammatory cardiovascular disorder. Curr Mol Med 2005;5(3):309-22.

Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in Type 2 diabetes mellitus: Insights from mechanistic studies. Lancet 2008;371(9629):1800-9.

Subhapriya S, Tomi L, Padmanaban VC. Atherosclerosis: Critical role of oxidation and inflammation. Int J Pharm Pharm Sci 2013;5:6-8.

Skovsø S. Modeling Type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 2014;5(4):349-58.

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87(1):4-14.

Reaven G. Insulin resistance, Type 2 diabetes mellitus, and cardiovascular disease: The end of the beginning. Circulation 2005;112(20):3030-2.

Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced Type 2 diabetes rat model. Exp Diabetes Res 2008;2008:704045.

Muwarni S, Ali M, Muliartha K. Diet aterogenik pada tikus putih (Rattus novergicus strain Wistar) sebagai model hewan aterosklerosis. J Kedokteran Brawijaya 2006;22:6-9.

Rohman MS, Lukitasari M, Nugroho DA, Nashi W, Nugraheini NI, Sardjono TW. Development of an experiment model of metabolic syndrome in Sprague dawley rat. Res J Life Sci 2017;4:76-86.

Nelson TL, Biggs ML, Kizer JR, Cushman M, Hokanson JE, Furberg CD, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA2) and future risk of Type 2 diabetes: Results from the Cardiovascular Health Study. J Clin Endocrinol Metab 2012;97(5):1695-701.

Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI. The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to athersclerotic lesion formation. Proc Natl Acad Sci 2000;97(16):9052-7.

Navale AM, Paranjape AN, Role of inflammation in development of diabetic complications and commonly used inflammatory markers with respect to diabetic complications. Int J Pharm Pharm Sci 2013;5:1-5.

Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 2009;61(4):595-603.

Indira M, Abhilash PA. Role of NF-κappa B (NF-κB) in diabetes. For Immunopathol Dis Therap J 2013 4(2):111-32.

Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-?B in Aging and Disease. Aging Dis 2011;2(6):449-65.

Wihastuti TA, Heriansyah T, Soraya M, Wijayanti MD, Firani NK, Iskandar A et al. Inhibition of oxidative stress in hypercholesterolemic rats by soy milk. J Cardiovasc Disease Res 2016;7(2):74-82.

Wihastuti TA, Sargowo D, Tjokroprawiro A, Permatasari N, Widodo MA, Soeharto S. Vasa vasorum anti-angiogenesis through H2O2, HIF-1a, NF-kB and iNOS inhibition by mangosteen pericarp ethanolic extract (Garcinia mangostana Linn) in hypercholesterol-diet-given Rattus norvegicus Wistar strain. Vasc Health Risk Manag 2014;10:523-31.

Heriansyah T, Adam AA, Wihastuti TA, Rohman MS. Elaborate evaluation of serum and tissue oxidized LDL level with darapladib therapy: A feasible diagnostic marker for early atherogenesis. Asian Pac J Trop Biomed 2016. DOI: 10.1016/j.apjtb.2016.11.014.

Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Rev Endocr Metab Disord 2010;11(1):61-74.

Zhu HA. Lp-PLA2, a novel potential biomarker predicting cardiovascular disease in Type 2 diabetes mellitus. Med Clin Rev 2016;2(2):20.

Han X, Wang T, Zhang J, Liu X, Li Z, Wang G. Apolipoprotein CIII regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFkB pathways. Biol Open 2015;4:661-5.

Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent Type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 2015;24(3):283-307.

Published

01-12-2017

How to Cite

Wihastuti, T. A., D. Z. P. Andiyani, S. Andarini, and T. Heriansyah. “DECREASEMENT OF LYSOPHOSPHATIDYLCHOLINE LEVEL, NF-KB EXPRESSION, INTIMA MEDIA THICKNESS AND IMPROVEMENT OF INSULIN RESISTANCE BY DARAPLADIB TREATMENT: IN VIVO STUDIES OF TYPE 2 DIABETES MELLITUS SPRAGUE-DAWLEY RAT MODEL”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 12, Dec. 2017, pp. 362-5, doi:10.22159/ajpcr.2017.v10i12.19022.

Issue

Section

Original Article(s)