ANTIPROLIFERATIVE POTENTIAL OF PERGULARIA DAEMIA (FORSK.) ON HUMAN ORAL EPIDERMOID CARCINOMA (KB) CELLS BY INDUCING APOPTOSIS AND MODIFYING OXIDANT ANTIOXIDANT STATUS
Abstract
Objective:  Management  of  cancer  without  any  side  effects  is  still  a  challenge  for  the medicinal  system.  This  leads  to  an  increasing  search  for  improved  anticancer  drugs. Few  of  plant  products  have  been  used  in  traditional  medicine  for  thousands  of  years and  have  been  drawing  of  great  deal  of  attention  to  suppress  cancer. The  main  objective  of  this  study  is to  evaluate  the  antiproliferative  effect  of  Pergularia  daemia  (Forsk)  against  KB  cells.
Methods:  Different  concentrations  of  areal  part  of  Pergularia  daemia  methanolic extract  (10,20,40,80,160,320 µg/ml)  were  subjected  to  cytotoxic  study.  The antiproliferative  effect  of  PDME  was  determined  by  MTT  assay,  analysis  of  ROS generation,  mitochondrial  membrane  potential,  cell  cycle  arrest  and  antioxidant  status.
Result:  Increased  level  of  intracellular  ROS,  lipid  peroxidation  marker  (TBARS),  DNA damage  (comet  assay),  apoptotic  death  and  cell  cycle  arrest  in  PDME  treated  cells. Whereas  decreased  activity  of  antioxidants  and  altered  mitochondrial  membrane potential  were  observed  in  PDME  treated  cells.
Conclusion: The  current  investigation  suggested  that  the  phyto constituents  of Pergularia  daemia  responsible  for  anticancer  activity.  Thus  the  long  term  consumption of  Pergularia  daemia  could  be  considered  and  promoted  as  a  adjuvant  therapy  for various  malignancy.Â
Downloads
References
Jesudason EP, Masilamoni JG, Jebaraj CE, Paul SF, Jayakumar R. Efficacy of DL-alpha lipoic acid against systemic inflammation-induced mice: Antioxidant defense system. Mol Cell Biochem 2008;313(1‑2):113-23.
Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 2011;349(1-2):11-9.
Lakshmi S, Dhanaya GS, Joy B, Padmaja G, Remani P. Inhibitory effect of an extract of Curcuma zedoaria on human cervical carcinoma cells. Med Chem Res 2008;17:335-44.
Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175(1):184-91.
Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gózdz S, et al. A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 2003;534(1-2):15-20.
Olive PL, Banath JB, Durand RE. Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat Res 1990;122:86-94.
Niehaus WG Jr, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 1968;6(1):126-30.
Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984;21(2):130-2.
Sinha KA. Colorimetric assay of catalase. Anal Biochem 1972;47:389‑94.
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973;179(4073):588-90.
Ellman GL. Tissue sulfydryl groups. Arch Biochem Biophys 1959;82:70-7.
Stoll C, Baretton G, Ahrens C, Löhrs U. Prognostic significance of apoptosis and associated factors in oral squamous cell carcinoma. Virchows Arch 2000;436(2):102-8.
King A, Young G. Characteristics and occurrence of phenolic phytochemicals. Phytomedicine 2000;7(6):483-91.
Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol 1997;53(2):121-33.
Karthishwaran K, Mirunalini S. Therapeutic potential of Pergularia daemia (Forsk.): The ayurvedic wonder. Int J Pharmacol 2010;6(6):836‑43.
Madhulika B, Jatinder SA, Ajit KS. In vitro cytotoxicity of extracts and fractions of Calotropisprocera (Ait.) roots against human cancer cell lines. Int J Green Pharm 2010;4(1):36-40.
Manosroi J, Dhumtanom P, Manosroi A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett 2006;235(1):114-20.
Schumacker PT. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 2006;10(3):175-6.
Sheu SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: A new therapeutic direction. Biochim Biophys Acta 2006;1762(2):256-65.
López-Lázaro M. Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemoprevention and therapy. Cancer Lett 2007;252(1):1-8.
Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 2010;33(8):1181-91.
Ma CG, Song MM, Zhang Y, Yan MQ, Zhang M, Hong Bi. Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep 2014;1:114-21.
Ma MT, Yeo JF, Farooqui AA, Ong WY. Role of calcium independent phospholipase A2 in maintaining mitochondrial membrane potential and preventing excessive exocytosis in PC12 cells. Neurochem Res 2011;36(2):347-54.
Chia YC, Rajbanshi R, Calhoun C, Chiu RH. Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 2010;15(11):8377-89.
McMillan TJ, Steel GG. DNA damage and cell killing. In: Steel GG, editor. Basic Clinical Radiobiology. London: Arnold; 1997. p. 58-69.
Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 2004;23(8):1599-607.
Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 1999;26(1-2):107-16.
Zheng LF, Dai F, Zhou B, Yang L, Liu ZL. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Food Chem Toxicol 2008;46(1):149-56.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.