ANALYSIS OF SALIVARY COMPONENTS TO EVALUATE THE PATHOGENESIS OF AUTISM IN CHILDREN

Authors

  • Geetha Arumugam University of Madras
  • Sujatha Sridharan

Abstract

Objective: Autism is a neurodevelopmental disorder affecting the cognitive and social skills with severe implications on the affected individual's
ability to lead productive and independent life. The present study is focused on evaluating the alteration in the levels of salivary components including
antioxidants, in children with different grades of severity of autism.
Materials and Methods: Unstimulated whole saliva sample was collected from normal, and autistic children grouped as medium functioning autism
(MFA) and low functioning autism (LFA) based on childhood autism rating scale score (n-20 in each group). Concentration of protein, cholesterol,
thiocyanate (SCN¯), mucin, uric acid, lipid peroxides (LPO), reduced glutathione (GSH), α-amylase and antioxidant enzymes activity were determined
in saliva.
Results: LFA group showed elevated levels (p=0.000) of protein, SCN¯, mucin, uric acid, α-amylase and LPO when compared to MFA group and
normal children. Antioxidant enzymes, cholesterol and GSH levels were significantly decreased (p=0.000) in LFA than in MFA and normal children.
Significant elevation in the levels of SCN¯ (p=0.001) and mucin (p=0.004) was observed in LFA than in MFA. The electrophoretic pattern revealed that
protein corresponding to 52-63 kD are significantly elevated, and 63-76 kD are decreased in autistic children. Western blot of salivary glutathione-Stransferase-
2 (GST-2) showed decreased activity in LFA than in MFA and normal children.
Conclusion: The results showed that alteration in salivary components, including antioxidant enzymes, especially GST was proportional to the
severity of autism, which can act as biological marker for diagnosing autism and also saliva can be considered as a non-invasive specimen to study the
pathogenesis of autism like other biological specimen.

Keywords: Antioxidants, Autism, Glutathione-2, Low functioning autism, Medium functioning autism, Protein marker, Unstimulated saliva

Downloads

Download data is not yet available.

Author Biography

Geetha Arumugam, University of Madras

Department of Biochemistry,

Associate Professor

References

Wing L, Gould J. Severe impairments of social interaction and

associated abnormalities in children: Epidemiology and classification.

J Autism Dev Disord 1979;9(1):11-29.

Rutter M. Incidence of autism spectrum disorders: Changes over time

and their meaning. Acta Paediatr 2005;94(1):2-15.

Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE,

et al. The epidemiology of autism spectrum disorders. Annu Rev Public

Health 2007;28:235-58.

Rutter M. Aetiology of autism: Findings and questions. J Intellect

Disabil Res 2005;49:231-8.

Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and

risk for autism. Neurosci Biobehav Rev 2008;32(8):1519-32.

Amado FM, Vitorino RM, Domingues PM, Lobo MJ, Duarte JA.

Analysis of the human saliva proteome. Expert Rev Proteomics

;2(4):521-39.

Weddell J, Sanders B, Jones J. Dental problems of children with

disabilities. In: McDonald R, Avery D, Dean J, editors. Dentistry for

the Child and Adolescent. 8th ed. St. Louis, Mo: Elsevier Mosby; 2004.

p. 543.

Medina AC, Sogbe R, Gómez-Rey AM, Mata M. Factitial oral lesions

in an autistic paediatric patient. Int J Paediatr Dent 2003;13(2):130-7.

Rajaneekar D, Sathyavati D, Kumar SB, Reddy JP, Abbulu K.

Evaluation of antioxidant activity of two important memory enhancing

medicinal plants Celtis timorensis and Vanda Spathulata. Asian J Pharm

Clin Res 2013;6:153-5.

Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive

metabolites of oxygen and nitrogen: In vitro and in vivo considerations.

Am J Physiol Regul Integr Comp Physiol 2004;286(3):R431-44.

Bradford MM. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye

binding. Anal Biochem 1976;72:248-54.

Zak B. Simple rapid microtechnic for serum total cholesterol. Am J Clin

Pathol 1957;27:583-8.

Caraway WT. Determination of uric acid in serum by a carbonate

method. Am J Clin Pathol 1955;25(7):840-5.

Hall RL, Miller RJ, Peatfield AC, Richardson PS, Williams I,

Lampert I. A colorimetric assay for mucous glycoproteins using Alcian

Blue [proceedings]. Biochem Soc Trans 1980;8(1):72.

Sarosiek J, Rourk RM, Piascik R, Namiot Z, Hetzel DP, McCallum RW.

The effect of esophageal mechanical and chemical stimuli on salivary

mucin secretion in healthy individuals. Am J Med Sci 1994;308(1):23-31.

Bowler RG. The determination of thiocyanate in blood serum. Biochem

J 1944;38(5):385-8.

Bernfeld P. Enzymes of starch degradation and synthesis. In: Nord FF,

editor. Advances in Enzymology. Vol. 12. New York: Interscience

Publ.; 1951. p. 379-428.

Draper HH, Hadley M. Malondialdehyde determination as index of

lipid peroxidation. Methods Enzymol 1990;186:421-31.

Moron MS, Depierre JW, Mannervik B. Levels of glutathione,

glutathione reductase and glutathione S-transferase activities in rat lung

and liver. Biochim Biophys Acta 1979;582(1):67-78.

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay

of superoxide dismutase. Indian J Biochem Biophys 1984;21(2):130-2.

Sinha AK. Colorimetric assay of catalase. Anal Biochem

;47(2):389-94.

Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods

Enzymol 1984;105:114-21.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The

first enzymatic step in mercapturic acid formation. J Biol Chem

;249:7130-9.

Laemmli UK. Cleavage of structural proteins during the assembly of

the head of bacteriophage T4. Nature 1970;227(5259):680-5.

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins

from polyacrylamide gels to nitrocellulose sheets: Procedure and some

applications. Proc Natl Acad Sci U S A 1979;76(9):4350-4.

Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, et al.

The proteomes of human parotid and submandibular/sublingual

gland salivas collected as the ductal secretions. J Proteome Res

;7(5):1994-2006.

Huq NL, DeAngelis A, Rahim ZH, Ung M, Lucas J, Cross KJ, et al.

Whole and parotid saliva - Protein profiles as separated on 5-20% SDSpolyacrylamide

gradient gel electrophoresis and using MALDI-TOF

mass spectrometry. Ann Dent Univ Malaya 2004;11(1):24-9.

Seneff S, Davidson R, Mascitelli L. Might cholesterol sulfate deficiency

contribute to the development of autistic spectrum disorder? Med

Hypotheses 2012;78(2):213-7.

Tierney E, Bukelis I, Thompson RE, Ahmed K, Aneja A, Kratz L, et al.

Abnormalities of cholesterol metabolism in autism spectrum disorders.

Am J Med Genet B Neuropsychiatr Genet 2006;141B(6):666-8.

Wang GF, Li MG, Gao YC, Fang B. Amperometric sensor used for

determination of thiocyanate with a silver nanoparticles modified

electrode. Sensors 2004;4(9):147-55.

Toruno JS, Van Kan H. Simultaneous determination of tobacco smoke

uptake parameters nicotine, cotinine and thiocyanate in urine, saliva and

hair, using gas chromatography –mass spectrometry for characterization

of smoking status of recently exposed subjects. Analyst 2003;128:838.

Conner GE, Salathe M, Forteza R. Lactoperoxidase and hydrogen

peroxide metabolism in the airway. Am J Respir Crit Care Med

;166:S57-61.

Weuffen W, Bergmann H, Blohm H, Böhland H, Hiepe T, Schönfeld P.

Thiocyanate – A biologically active ion of veterinary and medical

relevance. Berl Munch Tierarztl Wochenschr 2003;116(3-4):144-56.

Luepker RV, Pechacek TF, Murray DM, Johnson CA, Hund F,

Jacobs DR. Saliva thiocyanate: A chemical indicator of cigarette

smoking in adolescents. Am J Public Health 1981;71(12):1320-4.

Waring RH, Klovrza LV. Sulphur metabolism in autism. J Nutr Environ

Med 2000;10:25-32.

Miller E, Kędziora J. Effect of whole body cryotherapy on uric acid

concentration in plasma of multiple sclerosis patients. Int Rev Allergol

Clin Immunol 2011;17(1-2):20-3.

Perelló J, Sanchis P, Grases F. Determination of uric acid in urine,

saliva and calcium oxalate renal calculi by high-performance liquid

chromatography/mass spectrometry. J Chromatogr B Analyt Technol

Biomed Life Sci 2005;824(1-2):175-80.

Freedman DS, Williamson DF, Gunter EW, Byers T. Relation of serum

uric acid to mortality and ischemic heart disease. The NHANES I

Epidemiologic Follow-up Study. Am J Epidemiol 1995;141(7):637-44.

Kawagishi S, Fahim RE, Wong KH, Bennick A. Purification and

characterization of subunits of a high molecular weight human salivary

mucin. Arch Oral Biol 1990;35(4):265-72.

Slomiany BL, Fekete Z, Murty VL, Grabska M, Piotrowski J,

Yotsumoto F, et al. Regulation of buccal mucosal calcium channel

activity by salivary mucins. Int J Biochem 1993;25(9):1281-9.

Granger DA, Kivlighan KT, el-Sheikh M, Gordis EB, Stroud LR.

Salivary alpha-amylase in biobehavioral research: Recent developments

and applications. Ann N Y Acad Sci 2007;1098:122-44.

Yavuzyilmaz E, Yumak O, Akdoganli T, Yamalik N, Ozer N, Ersoy F,

et al. The alterations of whole saliva constituents in patients with

diabetes mellitus. Aust Dent J 1996;41(3):193-7.

Keller PS, El-Sheikh M. Salivary alpha-amylase as a longitudinal

predictor of children’s externalizing symptoms: Respiratory sinus

arrhythmia as a moderator of effects. Psychoneuroendocrinology

;34(5):633-43.

Granger DA, Kivlighan KT, Blair C, El-Sheikh M, Mize J, Lisonbee JA,

et al. Integrating the measurement of salivary α-amylase into studies of

child health, development, and social relationships. J Soc Pers Relat

;23(2):267-90.

Halliwell B. Reactive oxygen species in living systems:

Source, biochemistry, and role in human disease. Am J Med

;91(3C):14S-22.

Karincaoglu Y, Batcioglu K, Erdem T, Esrefoglu M, Genc M. The

levels of plasma and salivary antioxidants in the patient with recurrent

aphthous stomatitis. J Oral Pathol Med 2005;34(1):7-12.

Momen-Beitollahi J, Mansourian A, Momen-Heravi F, Amanlou M,

Obradov S, Sahebjamee M. Assessment of salivary and serum

antioxidant status in patients with recurrent aphthous stomatitis. Med

Oral Patol Oral Cir Bucal 2010;15(4):e557-61.

Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T. Investigation of

antioxidant enzymes in children with autistic disorder. Prostaglandins

Leukot Essent Fatty Acids 2002;67(5):341-3.

Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, et al.

Increased oxidative stress and altered activities of erythrocyte free

radical scavenging enzymes in autism. Eur Arch Psychiatry Clin

Neurosci 2004;254(3):143-7.

Rice-Evans C, Burdon R. Free radical-lipid interactions and their

pathological consequences. Prog Lipid Res 1993;32(1):71-110.

Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the

glutathione redox system. Cell Biochem Funct 2002;20(1):61-6.

Perry SW, Norman JP, Litzburg A, Gelbard HA. Antioxidants are

required during the early critical period, but not later, for neuronal

survival. J Neurosci Res 2004;78(4):485-92.

Meagher EA, FitzGerald GA. Indices of lipid peroxidation in vivo:Strengths and limitations. Free Radic Biol Med 2000;28(12):1745-50.

James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH,

et al. Metabolic endophenotype and related genotypes are associated

with oxidative stress in children with autism. Am J Med Genet B

Neuropsychiatr Genet 2006;141B(8):947-56.

Oztürk LK, Furuncuoglu H, Atala MH, Uluköylü O, Akyüz S, Yarat A.

Association between dental-oral health in young adults and salivary

glutathione, lipid peroxidation and sialic acid levels and carbonic

anhydrase activity. Braz J Med Biol Res 2008;41(11):956-9.

Sailaja YR, Baskar R, Saralakumari D. The antioxidant status during

maturation of reticulocytes to erythrocytes in type 2 diabetics. Free

Radic Biol Med 2003;35(2):133-9.

Main PA, Angley MT, O’Doherty CE, Thomas P, Fenech M. The

potential role of the antioxidant and detoxification properties of

glutathione in autism spectrum disorders: A systematic review and

meta-analysis. Nutr Metab (Lond) 2012;9:35.

John DH, Richard CS. Glutathione S transferase polymorphism and

their biological consequences. Pharmacology 2000;61:154-66.

Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK. Novel metabolic

biomarkers related to sulfur-dependent detoxification pathways in

autistic patients of Saudi Arabia. BMC Neurol 2011;11:139.

Buyske S, Williams TA, Mars AE, Stenroos ES, Ming SX, Wang R,

et al. Analysis of case-parent trios at a locus with a deletion allele:

Association of GSTM1 with autism. BMC Genet 2006;7:8.

Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-

Santiago MF, et al. Risk of autistic disorder in affected offspring of

mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr

Adolesc Med 2007;161(4):356-61.

Published

01-09-2014

How to Cite

Arumugam, G., and S. Sridharan. “ANALYSIS OF SALIVARY COMPONENTS TO EVALUATE THE PATHOGENESIS OF AUTISM IN CHILDREN”. Asian Journal of Pharmaceutical and Clinical Research, vol. 7, no. 4, Sept. 2014, pp. 205-11, https://journals.innovareacademics.in/index.php/ajpcr/article/view/1931.

Issue

Section

Original Article(s)