MODELLING THERMAL SHOCK BASED CRACKING BEHAVIOUR OF ARMOUR MATERIAL FOR FUSION REACTOR

Authors

  • Ankush Rai School of Computing Science & Engineering, VIT University, Chennai, Tamil Nadu, India
  • Jagadeesh Kannan R School of Computing Science & Engineering, VIT University, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ajpcr.2017.v10s1.19642

Keywords:

Crack modelling, finite element analysis

Abstract

Abstract -This study presents a computational model for studying the mechanical effects of thermal shock over armour material used for fusion reactor. The simulation study comprises of transient thermal shocks over the bulk substance for a period of 1ms. Latter on the cracking behaviour is predicted by extending the virtual crack growth for screening out the efficacy of the used material and its composition.  

Downloads

Download data is not yet available.

References

Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces. Mater Trans 2005;46:412-24.

Raffray AR, Nygren R, Whyte DG, Abdel-Khalik S, Doerner R, Escourbiac F, et al. High heat flux components - Readiness to proceed from near term fusion systems to power plants. Fusion Eng Des 2010;85(1):93-108.

Hirai T, Pintsuk G, Linke J, Batilliot M. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J Nucl Mater 2009;390-391:751-4.

Pintsuk G, Prokhodtseva A, Uytdenhouwen I. Thermal shock characterization of tungsten deformed in two orthogonal directions. J Nucl Mater 2011;417:481-6.

Wirtz M, Linke J, Pintsuk G, Singheiser L, Uytdenhouwen I. Comparison of the thermal shock performance of different tungsten grades and the influence of microstructure on the damage behaviour. Phys Scr 2011;145:014058.

Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Roedig M, et al. Performance of different tungsten grades under transient thermal loads. Nucl Fusion 2011;51:073017.

Simulia Corp. Analysis User’s Manual, Abaqus 6.12. Providence, RI, USA: Dassault Systémes Simulia Corp.; 2012.

Siemens AG. Internal Report on Physical Parameters of Tungsten; 1995.

PLANSEE, Tungsten Material Properties and Applications. Available from: http://www.plansee.com/en/Materials-Tungsten-403.htm2014.

Uytdenhouwen I. Degradation of First Wall Materials Under ITER Relevant Loading Conditions Ph.D. Thesis University Gent; 2011.

Garkusha I, Landman I, Linke J, Makhlaj V, Medvedev A, Malykhin S, et al. ???. J Nucl Mater 2011;415:481-6.

Carslaw HS, Jaeger JC. Conduction of Heat in Solids. 2nd ed. New York: Oxford University Press; 1959.

De Temmerman G, Zielinski JJ, van Diepen S, Marot L, Price M. ELM simulation experiments on Pilot-PSI using simultaneous high flux plasma and transient heat/particle source. Nucl Fusion 2011;51(7):073008.

Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 1999;45(5):601-20.

Gludovatz B, Wurster S, Hoffmann A, Pippan R. 17th Plansee Seminar; 2009.

Rice JR. A Path Independent Integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 1968;35:379-86.

Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten. J Nucl Mater 2003;323:304-12.

Ankush R. Dynamic data flow based spatial sorting method for GPUs: Software based autonomous parallelization. Recent Trends Parallel Comput 2014;1(1):15-8.

Ankush R. Edge split mapping parallel algorithm for tetrahedral mesh refinement on distributed memory systems. Recent Trends Parallel Comput 2014;1(1):19-22.

Published

01-04-2017

How to Cite

Rai, A., and J. K. R. “MODELLING THERMAL SHOCK BASED CRACKING BEHAVIOUR OF ARMOUR MATERIAL FOR FUSION REACTOR”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 13, Apr. 2017, pp. 214-7, doi:10.22159/ajpcr.2017.v10s1.19642.

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 3 4 > >>