• Balraj Janani Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
  • Ganesan Saibaba Department of Animal Science, Bharathidasan University, Trichirapalli, Tamil Nadu, India
  • Govindaraju Archunan Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
  • Kalieswaran Vidhya Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
  • Jairaman Karunyadevi Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
  • Jayaraman Angayarkanni Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India




High-performance liquid chromatography, 3-hydroxy-3-methylglutaryl coenzyme A reductase, Lovastatin, Inhibition rate, 5-diphenyl tetrazolium bromide



 Objective: The objective of the present study is to evaluate the anticancer potential of lovastatin obtained from fungal source.

Methods: About 15 fungal cultures were isolated from soil samples collected from Bharathiar University, India, and all are identified and characterized through microscopic characterization. Lovastatin producing capability was confirmed through bioassay against Saccharomyces cerevisiae, and the ability of selected fungus to produce lovastatin was further confirmed by high-performance liquid chromatography. Maximum lovastatin producing fungi were further selected for purification (overloaded elution chromatography) and characterization done using inhibition rate (IR). 5-diphenyl tetrazolium bromide (MTT) assay using A549 cell line was performed for antitumor activity evaluation.

Results: Among the 15 isolates, Aspergillus flavus exhibited the maximum zone of inhibition (1.5 cm) against the test organism through solid-state fermentation. The resemblance in retention time (RT) of peak shown in chromatograms of standard lovastatin (RT=25.1 minutes) and sample (RT=25.1 minutes) were similar. This confirmed the presence of lovastatin in the selected fungal isolate (A. flavus). The presence of two functional groups in lovastatin C=O and O-H was confirmed by IR spectrum 50% of cell lysis was observed in MTT assay.

Conclusion: Lovastatin obtained from soil fungi is capable of producing lovastatin in good proportions. Obtained fungal lovastatin exhibited significant antitumor activity against A549 cell line. Like other biological derivatives, lovastatin from soil fungi had greater potential in anticancer activity, and further biosynthetic pathway insights in their production can improve the yield which aid in large scale production.


Download data is not yet available.


Sivasithamparam K, Ghisalberti EL. Secondary metabolism in Trichoderma and Gliocladium. In: Trichoderma and Gliocladium Basic Biology Taxonomy and Genetics. Vol. 1. London, UK: Taylor & Francis Group; 1998. p. 139-91.

Endo A. Monacolin K. A new hypocholesterolemic agent produced by a Monascus species. J Antibiot (Tokyo) 1979;32(8):852-4.

Negishi S, Huang ZC, Hasumi K, Murakawa S. Productivity of monacolin K (mevinolin) in the genus Monascus. J Ferment Eng 1986;64:509-11.

Manzoni M, Rollini M, Bergomi S, Cavazzoni V. Production and purification of statins from Aspergillus terreus strains. Biotechnol Technol 1998;12(7):529-32.

Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reeducates and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 1980;77(7):3957-61.

Novak N, Gerdin S, Berovic M. Increased lovastatin formation by Aspergillus terreus using repeated fed-batch process. Biotechnol Lett 1997;19(10):947-8.

Szakács G, Morovján G, Tengerdy RP. Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol Lett 1998;20(4):411-5.

Rodriguez Porcel EM, Casas Lopez JL, Sanchez Perez JA, Chisti Y. Enhanced production of lovastatin in a bubble column by Aspergillus

terreus using a two-stage feeding strategy. J Chem Technol Biotechnol 2007;82(1):58-64.

Bizukojc M, Ledakowicz S. A macro kinetic modeling of the biosynthesis of lovastatin by Aspergillus terreus. J Biotechnol 2007;130(4):422-35.

Jia Z, Zhang X, Zhao Y, Cao X. Enhancement of lovastatin production by supplementing polyketide antibiotics to the submerged culture of Aspergillus terreus. Appl Biochem Biotechnol 2010;160(7):2014-25.

Upendra RS, Khandelwal P. Physical mutagenesis based strain improvement of Aspergillus sp. For enhanced production of lovastatin. Int J Pharm Pharmsci 2016;8(7):163-7.

Lopez JC, Pérez JS, Sevilla JF, Fernández FA, Grima EM, Chisti Y. Production of lovastatin by Aspergillus terreus: Effects of the C: N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Technol 2003;33(2):270-7.

Radha KV, Lakshmanan D. A review: Lovastatin production and applications. Asian J Pharm Clin Res 2013;6(3):21-6.

Balakrishnan K, Pandey A. Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 1996;55(5-6):365-72.

Robinson T, Singh D, Nigam P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 2001;55(3):284-9.

Hölker U, Lenz J. Solid-state fermentation. are there any biotechnological advantages? Curr Opin Microbiol 2005;8(3):301-6.

Valera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar D. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb Technol 2005;37(5):521-6.

Xu BJ, Wang QJ, Jia XQ, Sung CK. Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol Bioprocess Eng 2005;10(1):78-84.

Barrios-González J, Mejía A. Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 1996;2:85-121.

Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J 2013;15(81):146-61.

Blais L, Desgagné A, LeLorier J. 3-Hydroxy-3-methylglutaryl coenzyme a reeducates inhibitors and the risk of cancer: A nested case-control study. Arch Intern Med 2000;160(15):2363-8.

Lewis KA, Holstein SA, Hohl RJ. Lovastatin alters the isoprenoid biosynthetic pathway in acute myelogenous leukemia cells in vivo. Leuk Res 2005;29(5):527-33.

Alexopoulos CJ, Mims CN, Blackwell M. Introductory Mycology. New York, USA: John Willey & Sons Inc., Google Scholar; 1996.

Hajjaj H, Niederberger P, Duboc P. Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl Environ Microbiol 2001;67(6):2596-602.

Kumar MS, Kumar PM, Sarnaik HM, Sadhukhan AK. A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. J Microbiol Methods 2000;40(1):99-104.

Vilches-Ferrón MA, Casas-López JL, Sánchez-Pérez JA, Fernández-Sevilla JM, Chisti Y. Rapid screening of Aspergillus terreus mutants for overproduction of lovastatin. World J Microb Biotechnol 2005;21(2):123-5.

Babu RH, Rupa A, Radha S, Prasad NB, Narasimha G. Screening of lovastatin producing fungi by yeast growth inhibition assay method. J Pharm Res 2011;4(9):2967-8.

Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self-Nano emulsified drug delivery system (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation. Int J Pharm 2002;235:247-65.

Ghasemi-Mobarakeh L, Morshed M, Karbalaie K, Fesharaki M, Nasr-Esfahani MH, Baharvand H. Electrospun poly (ε-caprolactone) nanofiber mat as extracellular matrix. Yakhteh 2008;10(3):179-84.

Seenivasan A, Subhagar S, Aravindan R, Viruthagiri T. Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 2008;70(6):701-9.

Raper KB, Fennell DI. The Genus Aspergillus. Baltimore USA: Williams & Williams Company, Baltimore Google Scholar; 1965.

Klich MA. Identification of Common Aspergillus Species. Utrecht, Netherlands: Centraalbureau Voor Schimmelcultures; 2002.

Gilman J. A manual of soil fungi. Soil Sci 1957;84(2):183.

Keller NP, Turner G, Bennett JW. Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 2005;3(12):937-47.

Prabhakar A, Krishnaiah K, Janaun J, Bono A. An overview of engineering aspects of solid state fermentation. Malays J Microbiol 2005;1(2):10-6.

Barrios-González J, Baños JG, Covarrubias AA, Garay-Arroyo A. Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl Microbiol Biotechnol 2008;79(2):179-86.

Latha DP, Hemalatha KP. Production of lovastatin by Aspergillus flavipes NCIM 1209 using rice husk under solid state fermentation. Int J Adv Res Eng Appl Sci 2015;4(9):12-23.

Patil RH, Krishnan P, Maheshwari VL. Production of lovastatin by wild strains of Aspergillus terreus. Nat Prod Commun 2011;6(2):183-6.

Wei PL, Xu ZN, Cen PL. Lovastatin production by Aspergillus terreus in solid-state fermentation. J Zhejiang Univ Sci A 2007;8(9):1521-6.

Baranova NA, Kreiner VG, Egorov NS. The growth of Rhodotorula rubra yeasts and their synthesis of ergo sterol on media with lovastatin. Antibiot Khimioter 1996;41(11):3-6.

Nigam VK. Screening of different fungi for production of lovastatin. AJBPS 2015;5(44):24.

Lakshmanan D, Radha KV. An effective quantitative estimation of lovastatin from Pleurotus ostreatus using UV and HPLC. Int J Pharm Pharmsci 2012;4(4):462-4.

Ganiswara SG, Rianto S, Frans DS, Purwantyastuti. Farmakoligidan Tearpi. 5th ed., Vol. 10. Jakarta: Bagain Farmakologi Kedokteram, UI; 1985. p. 643.

Friedrich J, Žužek M, BenÄina M, Cimerman A, Å trancar A, Radež I. High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J Chromatogr A 1995;704(2):363-7.

Morovján G, Szakács G, Fekete J. Monitoring of selected metabolites and biotransformation products from fermentation broths by high-performance liquid chromatography. J Chromatogr A 1997;763(1-2):165-72.

Javed S, Meraj M, Mahmood S, Hameed A, Naz F, Hassan S, et al. Biosynthesis of lovastatin using agro-industrial wastes as carrier substrates. Trop J Pharm Res 2017;16(2):263-9.

Mangunwardoyo W, Rafliyanti Y, Kusmana D. Bioprospection of lovastatin in Aspergillus spp. from university of Indonesia culture collection (UICC). World Appl Sci J 2012;16(2):183-8.

Osman ME, Khattab OH, Zaghlol GM, El-Hameed RA. Screening for the production of cholesterol lowering drugs (lovastatin) by some fungi. Aust J Basic Appl Sci 2011;5(6):698-703.

Samiee SM, Moazami N, Haghighi S, Aziz-Mohseni F, Mirdamadi S, Bakhtiari MR. Screening of lovastatin production by filamentous fungi. Iran Biomed J 2003;7(1):29-33.

Gunde-Cimerman N, Friedrich J, Cimerman A, BeniÄki N. Screening fungi for the production of an inhibitor of HMG CoA reductase: Production of mevinolin by the fungi of the genus Pleurotus. FEMS Microbiol Lett 1993;111(2-3):203-6.

Nidhiya K, Sathya E, Nitya M. Extraction and purification of lovastatin from non-aflatoxigenic strains of Aspergillus flavus. Int J Biol Pharm Res 2012;4:916-21.

Pansuriya RC, Singhal RS. Response surface methodology for optimization of production of lovastatin by solid state fermentation. Braz J Microbiol 2010;41(1):164-72.

Alarcón J, Aguila S, Arancibia-Avila P, Fuentes O, Zamorano-Ponce E, Hernández M. Production and purification of statins from Pleurotus ostreatus (Basidiomycetes) strains. Z Naturforsch C 2003;58(1-2):62-4.

Patel RP, Patel MM. Preparation and evaluation of inclusion complex of the lipid lowering drug lovastatin with?-cyclodextrin. Dhaka Univ J Pharm Sci 2007;6(1):25-36.

Suffness M, Pezzuto JM. Assays for cytotoxicity and antitumor activity. Methods Plant Biochem 1991;6:71-133.

Schmidmaier R, Simsek M, Baumann P, Emmerich B, Meinhardt G. Synergistic antimyeloma effects of zoledronate and simvastatin. Anticancer Drugs 2006;17(6):621-9.

Wong WW, Tan MM, Xia Z, Dimitroulakos J, Minden MD, Penn LZ. Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res 2001;7(7):2067-75.



How to Cite

Janani, B., G. Saibaba, G. Archunan, K. Vidhya, J. Karunyadevi, and J. Angayarkanni. “PURIFICATION AND CYTOTOXICITY STUDY OF LOVASTATIN FROM SOIL FUNGI”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 10, Oct. 2017, pp. 258-62, doi:10.22159/ajpcr.2017.v10i10.20075.



Original Article(s)