HYPERMETHYLATED DNA AS BIOMARKER FOR NASOPHARYNGEAL CANCER DETECTION
DOI:
https://doi.org/10.22159/ajpcr.2018.v11i9.20974Keywords:
DNA hypermethylation, Epigenetic, Tumor suppressor gene, BiomarkersAbstract
Backgroud: Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable geographic and distribution worldwide, toward in Southern China and Southern Asia. In addition to Epstein–Barr virus infection, environmental carcinogens, the development of NPC involves the cumulative genetic as well as epigenetic alteration. More recently, it has been reported that DNA hypermethylation, an epigenetic mechanism, that occurred by the addition of a methyl group at 5' position of the pyrimidine ring of cytosine residues at CpG islands, has been considered as the cause of nasopharyngeal tumorigenesis. In recent years, many reports have focused on the identification, evaluation of aberrant methylation of target tumor suppressor genes' promoters, such as RASSF1A, BLU, DLEC, RARβ, p16, p15, p14, and MGMT in the NPC development.
Objective: We focused on the description and exemplification of the DNA hypermethylation changes in nasopharyngeal carcinoma.
Conclusion: we highlighted the DNA hypermethylation as a potential biomarker applied in monitoring, screening, and early diagnosis for cancer of nasopharynx.
Downloads
References
Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 2002;12:421-9.
Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell 2004;5:423-8.
Thompson LD. Update on nasopharyngeal carcinoma. Head Neck Pathol 2007;1:81-6.
McDermott AL, Dutt SN, Watkinson JC. The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci 2001;26:82-92.
Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1964;1:702-3.
Epstein JB, Jones CK. Presenting signs and symptoms of nasopharyngeal carcinoma. Oral Surg Oral Med Oral Pathol 1993;75:32-6.
Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G, et al. Etiological factors of nasopharyngeal carcinoma. Oral Oncol 2014;50:330-8.
Dai W, Zheng H, Cheung AK, Lung ML. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol 2016;5:16 28.
Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012;41:10-3.
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: A recent update. Protein Cell 2004;5:673-91.
Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007;61:24R-9.
Muntean AG, Hess JL. Epigenetic dysregulation in cancer. Am J Pathol 2009;175:1353-61.
Islam MD. Crucial challenges in epigenetic cancer therapeutic strategy yet to be resolved. Int J Pharm Pharm Sci 2016;8:1-6.
Esteller M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002;21:5427-40.
Diaz LA Jr, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol 2014;32:579-86.
Yuanyuan D, Haiyang Z, Haiyan L, Xiaokun L, Shulin Y. DNA methylation as an early diagnostic marker of cancer (Review). Biomed Rep 2014;2:326-30.
Chitakar E, Sherzay N. Epigenetics: Effect of environmental factors on human genome. Int J Pharm Pharm Sci 2016;8:1-6.
Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 1988;203:971-83.
Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 1992;6:705-14.
Le HA, Lao DT, Truong KP. DNA Hypermethylation in Breast Cancer, Breast Cancer - From Biology to Medicine, Ph.D. Phuc Pham (Ed.), InTech; 2017. p. 147-62.
Luczak MW, Jagodziński PP. The role of DNA methylation in cancer development. Folia Histochem Cytobiol 2006;44:143-54.
Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010;70:27-56.
Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of DNMT3A and DNMT3B through a direct interaction. J Biol Chem 2004;279:27816-23.
Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chédin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 2005;95:902-17.
Jin B, Li Y, Robertson KD. DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011;2:607-17.
Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21:163-7.
Mossman D, Scott RJ. Epimutations, inheritance and causes of aberrant DNA methylation in cancer. Hered Cancer Clin Pract 2006;4:75-80.
Dai W, Cheung AK, Ko JM, Cheng Y, Zheng H, Ngan RK, et al. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med 2015;4:1079-90.
Hui AB, Lo KW, Leung SF, Teo P, Fung MK, To KF, et al. Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. Int J Cancer 1999;82:498-503.
Lo KW, Teo PM, Hui AB, To KF, Tsang YS, Chan SY, et al. High-resolution allele type of micro dissected primary nasopharyngeal carcinoma. Cancer Res 2000;60:3348-53.
Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol 2002;12:451-62.
Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY. Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer 2012;31:215-22.
Cheng Y, Poulos NE, Lung ML, Hampton G, Ou B, Lerman MI, et al. Functional evidence for a nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. Proc Natl Acad Sci USA 1998;95:3042-7.
Agathanggelou A, Dallol A, Zöchbauer-Müller S, Morrissey C, Honorio S, Hesson L, et al. Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene 2003;22:1580-8.
Liu XQ, Chen HK, Zhang XS, Pan ZG, Li A, Feng QS, et al. Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer 2003;106:60-5.
Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST, et al. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 2004;23:4793-806.
Yau WL, Lung HL, Zabarovsky ER, Lerman MI, Sham JS, Chua DT, et al. Functional studies of the chromosome 3p21.3 candidate tumor suppressor gene BLU/ZMYND10 in nasopharyngeal carcinoma. Int J Cancer 2006;119:2821-6.
Ayadi W, Karray-Hakim H, Khabir A, Feki L, Charfi S, Boudawara T, et al. Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res 2008;28:2161-7.
Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, et al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 2001;61:3877-81.
Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 2002;8:131-7.
Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, et al. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther 2009;8:444-51.
Wang T, Liu H, Chen Y, Liu W, Yu J, Wu G. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2009;28:160.
Kwong J, Lo KW, Chow LS, To KF, Choy KW, Chan FL, et al. Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia 2005;7:67-74.
Loyo M, Brait M, Kim MS, Ostrow KL, Jie CC, Chuang AY, et al. A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma. Int J Cancer 2011;128:1393-403.
Ye M, Huang T, Ni C, Yang P, Chen S. Diagnostic capacity of RASSF1A promoter methylation as a biomarker in tissue, brushing, and blood samples of nasopharyngeal carcinoma. EBioMed 2017;18:32-40.
Laird PW. Principles and challenges of genome wide DNA methylation analysis. Nat Rev Genet 2010;11:191-203.
Soto J, Rodriguez-Antolin C, VallespÃn E, de Castro Carpeño J, Ibanez de Caceres I. The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res 2016;169:1-18.e1.
Leung F, Kulasingam V, Diamandis EP, Hoon DS, Kinzler K, Pantel K, et al. Circulating tumor DNA as a cancer biomarker: Fact or fiction? Clin Chem 2016;62:1054-60.
Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics 2017;15:59-72.
Ignatiadis M, Dawson SJ. Circulating tumor cells and circulating tumor DNA for precision medicine: Dream or reality? Ann Oncol 2014;25:2304-13.
Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: Power in cancer prognosis and response. Endocr Relat Cancer 2016;23:R157-71.
Wong TS, Kwong DL, Sham JS, Wei WI, Kwong YL, Yuen AP. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res 2004;10:2401-6.
Published
How to Cite
Issue
Section
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.