DESIGN, FORMULATION, AND CHARACTERIZATION OF STEARIC ACID-BASED SOLID LIPID NANOPARTICLES OF CANDESARTAN CILEXETIL TO AUGMENT ITS ORAL BIOAVAILABILITY

Authors

  • Anu Mahajan Department of Research, Innovation and Consultancy, I.K. Gujral Punjab Technical University, Kapurthala - 144 603, Punjab, India.
  • Satvinder Kaur Department of Pharmaceutical Sciences, GHG Khalsa College of Pharmacy, Gurusar Sadhar - 141 104, (Ludhiana) Punjab, India.
  • Satvinder Kaur Department of Pharmaceutical Sciences, GHG Khalsa College of Pharmacy, Gurusar Sadhar - 141 104, (Ludhiana) Punjab, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i4.23849

Keywords:

Candesartan cilexetil, Solid lipid nanoparticle, Nanoparticles, Stearic acid, Lipids, Bioavailability

Abstract

 Objective: Poor aqueous solubility and suboptimal oral bioavailability hamper the therapeutic efficacy of candesartan cilexetil (CDC). This study is designed to prepare solid lipid nanoparticle (SLN) of CDC and to enhance the oral absorption of CDC compared with free drug suspension.

Methods: The development and characterization of CDC-loaded SLN, using stearic acid as main encapsulating lipid, stabilized with poloxamer188 using modified emulsification-ultrasonication technique.â€

Results: CDC-SLN with a total drug content of 88.33±1.23% and entrapment efficiency of 78.28±1.91%, with an average particle size of 197.9 nm and zeta potential value −21.3 mV, was prepared. Differential scanning calorimetry and powder X-ray diffraction (PXRD) results confirmed the molecular encapsulation of the drug in amorphous state. CDC-SLN released 60.43% of drug in comparison to 17.11% released by CDC suspension in 24 h (p<0.05). The results of pharmacokinetic studies in rat showed that AUC0−t of CDC-SLN was significantly enhanced over 3-folds than that of free drug suspension (p<0.05).

Conclusion: SLN of CDC could be successful in improving the oral bioavailability of poorly soluble CDC.

Downloads

Download data is not yet available.

Author Biography

Anu Mahajan, Department of Research, Innovation and Consultancy, I.K. Gujral Punjab Technical University, Kapurthala - 144 603, Punjab, India.

Associate Professor Department of pharmaceutics

References

Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000;14 Suppl 1:S73-86.

McClellan KJ, Goa KL. Candesartan cilexetil. A review of its use in essential hypertension. Drugs 1998;56:847-69.

Ross A, Papademetriou V. Candesartan cilexetil in cardiovascular disease. Expert Rev Cardiovasc Ther 2004;2:829-35.

Ostergren J. Candesartan for the treatment of hypertension and heart failure. Expert Opin Pharmacother 2004;5:1589-97.

Meredith PA. Candesartan cilexetil-a review of effects on cardiovascular complications in hypertension and chronic heart failure. Curr Med Res Opin 2007;23:1693-705.

Nekkanti V, Pillai R, Venkateshwarlu V, Harisudhan T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Technol 2009;14:290-8.

Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self microemulsifying formulation for Candesartan cilexitil. AAPS Pharm Sci Tech 2010;11:9-17.

Gecer A, Yildiz N, Calmly A, Turan B. Trimethyl chitosan nanoparticles enhances dissolution of the poorly water soluble drug Candesartan cilexetil. Macromol Res 2010;18:986-91.

Bhilegaonkar S, Gaud R. Preparation of nanoparticles of Candesartan cilexetil by use of supercritical fluid technology and their evaluation. J Pharm Res 2014;8:779-85.

Vaculikova E, Grunwaldova V, Kral V, Dohnal J, Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules 2012;17:13221-34.

Bayindeir ZS, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using Candesartan cilexitil as a model poorly water soluble drug. AAPS Pharma Sci Tech 2015;16:108-12.

Gao F, Zhang Z, Bu H, Huang Y, Gao Z, Sneh J, et al. Nanoemulsion improves the oral absorption of Candesartan cilexitil in rats: Performance and mechanism. J Control Rel 2011;149:168-74.

Dabhi MR, Ghodosara UK, Mori DD, Patel KA, Manek R, Sheth NR. Formulation, optimization and characterization of Candesartan cilexitil nanosuspension for in vitro dissolution enhancement. Afr J Pharm Pharmacol 2015;9:102-13.

Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J 2014;22:246-57.

Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid Lipid nanoparticles loading Candesartan cilexitil enhance oral bioavailability: In vitro characteristics and absorption mechanism in rats. Nanomed 2012;8740-7.

Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: Characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv 2016;23:395-404.

Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci 2000;10:305-9.

Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR, et al. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci 2003;92:1085-94.

Liebert MA. Final report on the safety assessment of oleic acid, laurie acid, palmitic acid, myristic acid, and stearic acid. J Am College Toxicol 1987;6:321-401.

Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull (Tokyo) 2001;49:1444-7.

Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011;12:62-76.

Yuan H, Bao X, Du YZ, You J, Hu FQ. Preparation and evaluation of siO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery. Int J Nanomed 2012;7:5119-28.

Mussi SV, Torchilin VP. Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Matter Chem B 2013;1:5201-9.

Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapul 2001;18:149-58.

Müller RH, Mehnert W, Lucks JS. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 1995;41:62-9.

Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 2011;55:495-503.

Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013;441:202-12.

Kang KC, Lee CI, Pyo HB, Jeong NH. Preparation and characterization of nano-liposomes using phosphatidylcholine. J Ind Eng Chem 2005;11:847-51.

Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109.

Lee GS, Lee DH, Kang KC, Lee CI, Pyo HB, Choi TB. Preparation and characterization of bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) loaded solid lipid nano-particles (SLN). J Ind Eng Chem 2007;13:1180-7.

Mamdouh G, Ahmad G, Shadeed G. Effect of viscosity, surfactant type and concentration on physicochemical properties of solid lipid nanoparticles. Int J Pharm Pharm Sci 2015;7:145-53.

Abousamra MM, Mohsen AM. Solid lipid nanoparticles and nanostructured lipid carriers of tolnaftate: Design, optimization and in-vitro evaluation. Int J Pharm Pharm Sci 2016;8:380-5.

Rawat M, Singh D, Saraf S, Saraf S. Lipid carriers: A versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi 2008;128:269-80.

Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 2004;56:1527-35.

Lim SJ, Lee MK, Kim CK. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J Control Release 2004;100:53-61.

Tabatt K, Kneuer C, Sameti M, Olbrich C, Müller RH, Lehr CM, et al. Transfection with different colloidal systems: Comparison of solid lipid nanoparticles and liposomes. J Control Release 2004;97:321-32.

Das S, Ng WK, Kanujia P, Kim S, Tan RB. Formulation design, preparation and physiochemical characterization of SLN containing

a hydrophobic drug; effects of process variables. Coll Surf 2011;B88:483-9.

Pradhan M, Singh D, Singh MR. Development, characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chem Phys Lipids 2015;186:9-16.

Thakkar HP, Desai JL, Parmar MP. Application of Box-Behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil. Asian J Pharm 2014;8:81-9.

Hao K, Chen YC, Cao YG, Yu D, Liu XQ, Wang GJ, et al. Pharmacokinetic-pharmacodynamic modeling of telmisartan using an indirect response model in spontaneously hypertensive rats. Acta Pharmacol Sin 2007;28:738-43.

Neutel JM, Smith DH. Dose response and antihypertensive efficacy of the AT1 receptor antagonist Telmisartan in patients with mild to moderate hypertension. Adv Therp 1998;15:206-17.

Bargoni, A, Cavalli R, Caputo O, Fundarò A, Gasco MR, Zara GP. SLN in lymph and plasma after duodenal administration in rats. Pharma Res 1998;15:745-50.

Gosh S, Roy T. Nanoparticulate drug delivery systems: Lymphatic uptake and its gastrointestinal applications. J Appl Pharma Sci 2014;4:123-30.

Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid Lipid nanoparticles for enhancing Vinpocetine’s oral bioavailability. J Control Rel 2006;114:53-9.

Published

01-04-2018

How to Cite

Mahajan, A., S. Kaur, and S. Kaur. “DESIGN, FORMULATION, AND CHARACTERIZATION OF STEARIC ACID-BASED SOLID LIPID NANOPARTICLES OF CANDESARTAN CILEXETIL TO AUGMENT ITS ORAL BIOAVAILABILITY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 4, Apr. 2018, pp. 344-50, doi:10.22159/ajpcr.2018.v11i4.23849.

Issue

Section

Original Article(s)