ANTIBIOGRAM PROFILE AND BIOFILM FORMING POTENTIAL OF PSEUDOMONAS SPECIES ISOLATED FROM VARIOUS CLINICAL SPECIMENS

Authors

  • Jamsheera Cp Department of Microbiology, Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Karnataka, India.
  • Ethel Suman Department of Microbiology, Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i10.25518

Keywords:

Biofilm, Pseudomonas aeruginosa, Antibiogram, Antipseudomonal agents

Abstract

Objective: The present study aimed at finding the resistance pattern of Pseudomonas aeruginosa and other Pseudomonas species isolated from various clinical specimens in the laboratory.

Methods: A total of 150 isolates of different species of Pseudomonas obtained from various clinical specimens processed at the Microbiology laboratory of Kasturba Medical College, Manipal Academy of Higher Education, were taken for this study. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method and interpreted according to the CLSI guidelines. Biofilm assay was performed by modified O'Toole and Kolter method. The results were analyzed using SPSS 17.0 and Student's unpaired t-test, Kruskal–Wallis, Mann–Whitney, ANOVA, and Chi-square test. p<0.05 was considered statistically significant.

Results: Increased resistance was observed by P. aeruginosa to cefotaxime, cotrimoxazole, levofloxacin, ofloxacin, and ticarcillin clavulanate. There was also a good correlation between antibiotic resistance to aztreonam, netilmicin, and ceftazidime and biofilm production. Results of the present study, therefore, demonstrated the occurrence of resistance to various antipseudomonal agents among the biofilm-producing P. aeruginosa isolates.

Conclusion: The present study may help in assessing the seriousness of drug resistance caused by biofilm formation in P. aeruginosa and devise strategies through antibiotic policies to minimize such problems.

Downloads

Download data is not yet available.

Author Biography

Jamsheera Cp, Department of Microbiology, Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Karnataka, India.

ASSOCIATE PROFESSOR

DEPARTMENT OF MICROBIOLOGY

References

Anvarinejad M, Japoni A, Rafaatpour N, Mardaneh J, Abbasi P, Shahidi MA, et al. Burn patients wounds infected with metallo-beta-lactamase-producing Pseudomonas aeruginosa: Multidrug resistant strains. Arch Trauma Res 2014;3:e18182.

Van ‘t Wout E, van Schadewijk A, van Boxtel R, Dalton L, Clarke H, Tommassen J, et al. Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells. PLoS Pathog 2015;11:e1004946.

Mendiratta D, Narang P, Buchunde S, Deotale V. Comparison of disc and MIC reduction methods with polymerase chain reaction for the detection of metallo-β-lactamase in Pseudomonas aeruginosa. Indian J Med Microbiol 2012;30:170.

Peña C, Gómez-Zorrilla S, Suarez C, Dominguez MA, Tubau F, Arch O, et al. Extensively drug-resistant Pseudomonas aeruginosa: Risk of bloodstream infection in hospitalized patients. Eur J Clin Microbiol Infect Dis 2012;31:2791-7.

Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002;95:22-6.

Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 2013;14:20983-1005.

Kaiser S, Mutters N, De Rosa A, Ewers C, Frank U, Günther F. Determinants for persistence of Pseudomonas aeruginosa in hospitals: Interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis 2017;36:243-53.

Collee J, Mackie T, McCartney J. Mackie and McCartney Practical Medical New York : Churchill Livingstone; 1996. p. 151-8.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Informational Supplement CLSI Document. M100-S26. 26th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol Microbiol 1998;28:449-61.

Suman E, Varghese B, Joseph N, Nisha K, Kotian MS. The Bacterial biofilms in dialysis water systems and the effect of sub-inhibitory concentrations of chlorine on them. J Clin Diagn Res 2013;7:849-52.

Suman E, Jose J, Varghese S, Kotian MS. Study of biofilms production in Escherichia coli causing urinary tract infection. Ind J Med Microbiol 2007;25:305-6.

Suman E, Singh S, Kotian MS. Pseudomonas aeruginosa biofilms in hospital water systems and the effect of sub-inhibitory concentration of chlorine. J Hosp Infect 2008;70:199-201.

Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 2012;16:303-7.

Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis 2002;34:634-40.

Poole K. Pseudomonas aeruginosa: Resistance to the max. Front Microbiol 2011;2:65.

Hammami S, Ghozzi R, Burghoffer B, Arlet G, Redjeb S. Mechanisms of carbapenem resistance in non-metallo-beta-lactamase-producing clinical isolates of Pseudomonas aeruginosa from a Tunisian hospital. Pathol Biol (Paris) 2009;57:530-5.

El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G, Wretlind B. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: Alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005;113:187-96.

Strateva T, Yordanov D. Pseudomonas aeruginosa – A phenomenon of bacterial resistance. J Med Microbiol 2009;58:1133-48.

Walton MA, Villarreal C, Herndon DN, Heggers JP. The use of aztreonam as an alternate therapy for multi-resistant Pseudomonas aeruginosa. Burns 1997;23:225-7.

Khatri B, Basnyat S, Karki A, Poudel A, Shrestha B. Etiology and antimicrobial susceptibility pattern of bacterial pathogens from urinary tract infection. Nepal Med Coll J 2012;14:129-32.

Zakaria EA. Increasing ciprofloxacin resistance among prevalent urinary tract bacterial isolates in Gaza Strip, Palestine. J Biomed Biotechnol 2005;3:238-41.

Naeem M, Khan MA, Qazi SM. Antibiotic susceptibility pattern of bacterial pathogens causing urinary tract infection in a tertiary care hospital. Ann Pak Inst Med Sci 2010;6:214-8.

Hasan AS, Nair D, Kaur J, Baweja G, Deb M, Aggarwal P. Resistance patterns of urinary isolate in a tertiary Indian hospital. J Ayub Med Coll Abbottabad 2007;19:39-41

Chikwendu CI, Amadi ES, Obi RK. Prevalence and antimicrobial resistance in Pseudomonas aeruginosa and Klebsiella pneumoniae isolates from non-clinical urine samples. New York Sci J.2010;3:194-200.

Drago L, De Vecchi E, Mombelli B, Nicola L, Valli M, Gismondo MR. Activity of levofloxacin and ciprofloxacin against urinary pathogens. J Antimicrob Chemother 2001;48:37-45.

Prakash D, Saxena RS. Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of Meerut City, India. ISRN Microbiol 2013;2013:749629.

Lister P D, Gardner V M, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999;4:882-9.

Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa antimicrob. Agents Chemother 2005;49:479-87.

Bagge N, Schister M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-Lactamase and alginate production. Antimicrob Agents Chemother 2004;48:1175-87.

Rojo-Molinero E, Macia M, Rubio R, Moya B, Cabot G, Lopez-Causape C. Sequential treatment for biofilms with aztreonam and tobramycin is a novel strategy for combating Pseudomonas aeruginosa chronic respiratory infections. Antimicrobial Agents Chemother 2016;60:2912-22.

Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa. Clin Infect Dis 1998;27 Suppl 1:S93-9.

Yu Q, Griffin EF, Moreau-Marquis S, Shwartzman JD, Stanton BA, O’Toole GA. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms oncystic fibrosis derived human airway epithelial cells. J Antimicrob Chemother 2012;67:2673-81.

Mary RN, Banu N. Screening of antibiofilm and anti quorum sensing potential of Vitex trifolia in Pseudomonas aeruginosa. Int J Pharm Sci 2015;7:242-5

Rathinam P, Viswanathan P. Effects of antibiotics upon quorum sensing regulated characters: A propitious scheme against device associated infections. Int J Pharm Pharm Sci 2014;6:85-90.

Published

07-10-2018

How to Cite

Cp, J., and E. Suman. “ANTIBIOGRAM PROFILE AND BIOFILM FORMING POTENTIAL OF PSEUDOMONAS SPECIES ISOLATED FROM VARIOUS CLINICAL SPECIMENS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 10, Oct. 2018, pp. 150-4, doi:10.22159/ajpcr.2018.v11i10.25518.

Issue

Section

Original Article(s)