AN OVERVIEW ON THE BIOLOGICAL PERSPECTIVES OF AGLAIA SPECIES

Authors

  • Priya R Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613 401, Tamil Nadu, India.
  • Sowmiya P Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613 401, Tamil Nadu, India.
  • Meenakshi Sundaram Muthuraman Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613 401, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i9.26436

Keywords:

Aglaia, Medicinal plants, Biological activity

Abstract

Medicinal plants have been identified and used throughout human history for treating various diseases. Plants belonging to genus Aglaia have been used in traditional system of medicine. The genus Aglaia is a member of Meliaceae family. The plants belonging to this genus have various biological activities including antipyretic, astringent, antidiarrheal, antidysenteric, anti-inflammatory, and anticancer activity and are also used in treating skin diseases and tumors. The phytochemistry and the various biological activities of Aglaia sp. such as anticancer, anti-inflammatory, antioxidant, antidiabetic, and nanoparticle activity are discussed in this review paper.

Downloads

Download data is not yet available.

References

Khanuja SP. Functional diversity of plant metabolome and microbiome in health services to the human life. Proc Natl Acad Sci India Sect B Biol Sci 2012;82:291-4.

Arora DS, Onsare JG, Kaur H. Bioprospecting of Moringa (Moringaceae): Microbiological perspective. J Pharmacogn Phytochem 2013;1:193-215.

Goyal BR, Agrawal BB, Goyal RK, Mehta AA. Phyto-pharmacology of Moringa oleifera Lam.: An overview. Nat Prod Radiance 2007;6:347-53.

Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S, Van Rompay M, et al. Trends in alternative medicine use in the United States, 1990-1997: Results of a follow-up national survey. JAMA 1998;280:1569-75.

Barnes PM, Powell-Griner E, McFann K, Nahin RL. Complementary and alternative medicine use among adults: United States, 2002. Advance Data from Vital and Health Statistics, No. 343. Hyattsville, MD: National Center for Health Statistics; 2004.

Slesinski MJ, Subar AF, Kahle LL. Trends in use of vitamin and mineral supplements in the United States: The 1987 and 1992 National Health Interview Surveys. J Am Diet Assoc 1995;95:921-3.

Millen AE, Dodd KW, Subar AF. Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: The 1987, 1992, and 2000 National Health Interview Survey results. J Am Diet Assoc 2004;104:942-50.

Ernst E, Schmidt K, Wider B. CAM research in Britain: The last 10 years. Complement Ther Clin Pract 2005;11:17-20.

Barnes PM, Bloom B, Nahin R. Complementary and alternative medicine use among adults and children: United States, 2007. CDC National Health Statistics Report #12; 2008.

Sahoo N, Manchikanti P, Dey S. Herbal drugs: Standards and regulation. Fitoterapia 2010;81:462-71.

De Smet P. Herbal medicine in Europe: Relaxing regulatory standards. N Engl J Med 2005;352:1176-8.

Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: An ethical analysis. Bull World Health Organ 2008;86:594-9.

Vickers A, Zolliman C, Lee R. The ABC of complementary medicine: Herbal medicine. Br Med J 1999;319:1050-3.

Morse SS. Factors in the emergence of infectious diseases. Emerg Infect Dis 1995;1:7-15.

Handa SS, Sharma A, Chakroborty KK. Natural products and plants as liver protecting drug. Fitoterapia 1986;57:307-51.

Ebada SS, Lajkiewicz N, Porco JA Jr, Li-Weber M, Proksch P, Falk AD, et al., editors. Progress in the Chemistry of Organic Natural Products. Vol. 94. Vienna: Springer-Verlag Wien; 2011.

Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005;78:431-41.

Nugroho BW, Ssregen BG, Wray V, Witte TL, Bringmann G, Proksch P. Insecticidal rocaglamide derivatives from Aglaia elliptica And A. harmsina. Phytochemistry 1997;45:1579-85.

Dapat E, Jacinto S, Efferth T. A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells. BMC Complement Altern Med 2013;13:286.

Chen WL, Pan L, Kinghorn AD, Swanson SM, Burdette JE. Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer 2016;16:17.

Luan Z, He Y, He F, Chen Z. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein down regulation. Mol Med Rep 2015;11:203-11.

Li A, Yang L, Geng X, Peng X, Lu T, Deng Y, et al. Rocaglamide - A potentiates osteoblast differentiation by inhibiting NF-Κb signaling. Mol Cells 2015;38:941-9.

Neumann J, Boerries M, Kohler R, Giaisi M, Krammer PH, Busch H, et al. The natural anticancer compound rocaglamide selectively inhibits the G1-S-phase transition in cancer cells through the ATM/ATR-mediated Chk1/2 cell cycle checkpoints. Int J Cancer 2014;134:1991-2002.

Kinghorn AD, De Blanco EJ, Chai HB, Orjala J, Farnsworth NR, Doel Soejarto D, et al. Discovery of anticancer agents of diverse natural origin. Pure Appl Chem 2009;81:1051-63.

Kim S, Hwang BY, Su BN, Chai H, Mi Q, Kinghorn AD, et al. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in lncap cells through the mitochondrial/ apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res 2007;27:2175-83.

Pan L, Kardono LB, Riswan S, Chai H, De Blanco EJ, Pannell CM, et al. Isolation and characterization of minor analogues of silvesterol and other constituents from a large-scale recollection of Aglaia foveolata. J Nat Prod 2010;73:1873-8.

Kinghorn AD, Pan L, Fletcher JN, Chai H. The relevance of higher plants in lead compound discovery programs. J Nat Prod 2011;74:1539-55.

Pan L, Chai HB, Kinghorn AD. Discovery of new anticancer agents from higher plants. Front Biosci (Sch Ed) 2013;4:142-56.

Pan L, Acuna UM, Li J, Jena N, Ninh TN, Pannell CM, et al. Bioactive flavaglines and other constituents isolated from Aglaia perviridis. J Nat Prod 2013;76:394-404.

Ebada SS, Lajkiewicz N, Porco JA Jr, Li-Weber M, Proksch P. Chemistry and biology of rocaglamides (=flavaglines) and related derivatives from Aglaia species (Meliaceae). Prog Chem Org Nat Prod 2011;94:1-58.

Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al. Cyclopenta[B]benzofuran and secodammarane derivatives from the stems of Aglaia stellatopilosa. J Nat Prod 2016;79:784-91.

Kinghorn AD, De Blanco EJ, Lucas DM, Rakotondraibe HL, Orjala J. Discovery of anticancer agents of diverse natural origin. Anticancer Res 2016;36:5623-37.

Cencic R, Carrier M, Galicia-Va´Zquez G, Bordeleau ME, Sukarieh R, Bourdeau A, et al. Antitumor activity and mechanism of action of the cyclopenta[B]benzofuran, silvestrol. Eif4a as anti-cancer target. PLoS One 2009;4:5223.

Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, et al. Cycloart-24-Ene-26-Ol-3-one, a new cycloartane isolated from leaves of Aglaia exima triggers tumour necrosis factor-receptor 1-mediated caspase-dependent apoptosis in colon cancer cell line. New cycloartane triggers TNFR-1 apoptosis in colon cancer cell line. PLoS One 2016;11:e0152652.

Sun P, Jiang CS, Zhang Y, Liu AH, Liang TJ, Li J, et al. Aglaiabbrevins A-D, new prenylated bibenzyls from the leaves of Aglaia abbreviata with potent PTP1B inhibitory activity. Chem Pharm Bull 2017;65:295-9.

Liu JR, Ye YL, Lin TY, Wang YW, Peng CC. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chem 2013;139:938-43.

Yodsaoue O, Sonprasit J, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry 2012;76:83-91.

Janaki AS, Vijayasekaran AV, Viswanathan AS, Balakrishna K. Anti-inflammatory activity of Aglaia roxburghiana Var. Beddomei extract and triterpenes Roxburghiadiol A and B. J Ethnopharmacol 1999;67:45-51.

Manjari G, Saran S, Arun T, Rao AV, Devipriya SP. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. J Saudi Chem Soc 2017;21:610-8.

Gangarapu M, Sarangapany S, Veerabhali KK, Devipriya SP, Arava VB. A high-performance catalytic and recyclability of phyto-synthesized silver nanoparticles embedded in natural polymer. J Clust Sci 2017;2017:265864.

Benelli G, Govindarajan M, Senthilmurugan S, Vijayan P, Kadaikunnan S, Alharbi NS, et al. Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest priyangu (Aglaia elaeagnoidea): Toxicity on non-target mosquito natural enemies. Environ Sci Pollut Res Int 2018;25:10283-93.

Gangarapu M, Arava VR. Copper nanoparticles encapsulated alginate composite for reduction of aromatic nitro compounds. Int J Sci Eng Res 2017;8:732-5.

Manjari G, Saran S, Arun T, Devipriya SP, Rao AV. Facile Aglaia elaeagnoidea mediated synthesis of silver and gold nanoparticles: Antioxidant and catalysis properties. J Clust Sci 2017;8:2041-56.

Nithya S, Muthuraman MS. An overview on the biological perspectives of Nardostachys jatamansi DC. Int J Pharm Pharm Sci 2016;8:31-6.

Sujana N, Ramanathan S, Vimala V, Muthuraman MS, Pemaiah B. Antitumour potential of Passiflora incarnata.L against Ehrlich ascites carcinoma. Int J Pharm Pharm Sci 2012;4:17-20.

Published

07-09-2018

How to Cite

R, P., S. P, and M. S. Muthuraman. “AN OVERVIEW ON THE BIOLOGICAL PERSPECTIVES OF AGLAIA SPECIES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 9, Sept. 2018, pp. 42-45, doi:10.22159/ajpcr.2018.v11i9.26436.

Issue

Section

Review Article(s)