• Andree Álvarez Department Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima - 730 006, Ibagué, Colombia.
  • ÁNGEL JIMÉNEZ Department Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima - 730 006, Ibagué, Colombia.
  • JONH MÉNDEZ Department Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima - 730 006, Ibagué, Colombia.
  • Elizabeth Murillo Department Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima - 730 006, Ibagué, Colombia.



Antioxidant, Anthelmintic activity, Phenolic compounds, Gastrointestinal nematodes, Nil, Myrtaceae


Objective: The main objective of this study is to evaluate the chemical and bioactive properties of Eugenia stipitata (Myrtaceae) fruit seeds collected in the Andean region of Colombia using an ethanolic extract, a dichloromethane fraction (DF), and a hydroalcoholic residue.

Methods: E. stipitata seeds were evaluated using bromatological analysis; these were macerated (ethanol 96%) and partitioned (dichloromethane). Phytophenols composition of the samples was tested by high-pressure liquid chromatography-mass spectrometry and Folin–Ciocalteu method, then calculated as gallic acid equivalents (GAEs). Antiradical capacity was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 3-ethylbenzthiazoline-6- sulfonic acid (ABTS•+) and inhibitory concentration 50% (IC50) was calculated; antioxidant capacity was determined using ferric reducing antioxidant power, oxygen radical absorbance capacity, and OH• radical and hemolysis inhibition assays. Anthelmintic activity against Panagrellus redivivus and ovine gastrointestinal (GI) nematodes and toxicity on human blood cells were tested.

Results: E. stipitata seeds contain protein, sulfur, boron, iron, and copper. The ethanolic extract exhibited significant anthelmintic activity against free-living and GI nematodes, which would be associated with the phytophenols content, mostly tannins (29.14 g GAE/100 g). DF displayed the highest antiradical capacity in DPPH• and ABTS•+ (IC50: 2.65 and 0.33 mg/l, respectively) methods, antioxidant capacity, and hemolysis inhibition of human erythrocytes (IC50: 200 mg/l). There were no toxic metabolites to human blood cells.

Conclusion: These findings would be useful for promoting the use of E. stipitata seeds, collected in the Colombian Andean region, in biotechnological processes. This is the earliest paper showing a study carried out in Colombia with an interest in evaluating chemical and biological characteristics of E. stipitata seeds.


Download data is not yet available.


Hernández MS, Martínez O, Fernández-Trujillo J. Behavior of arazá (Eugenia stipitata Mc Vaugh) fruit quality traits during growth, development and ripening. Sci Hortic (Amsterdam) 2007;111:220-7.

Quevedo E. Aspectos agronómicos del cultivo de arazá (Eugenia stipitata Mc Vaugh) Frutal promisorio de la amazonia colombiana. Agron Colomb 1995;12:27-65.

McVaugh R. Tropical American Myrtaceae: Notes on Generic Concepts and Description of Previously Unrecognized Species. Chicago: Library of the University of Illinois at Urbana-Champaign. Chicago Natural History Museum; 1956. p.104.

Hernández M, Barrera J, Carrillo M. Arazá: Origen y Fisiología de Conservación. Bogotá, Colombia: Instituto Amazónico de Investigaciones Científicas - Sinchi; 2006.

Evaluaciones Agropecuarias Municipales. Agronet. Bogotá: Evaluaciones Agropecuarias Municipales; 2014.

Escobar C, Zuluzaga J, Martinez A. El Cultivo Del Arazá (Eugenia stipitata). CORPOÃCA, editor. Florencia-Caquetá: Graficas Florencia; 1996. p. 1-11.

Nascimento SA, Oliveira DF. Manual Técnico, Cultivo y Utilización Arazá (Eugenia stipitata). Amarillo, Fuente: Olga Wacht. A & C Impresores; 2000. p. 1-92.

Millán E, Restrepo P, Narváez C. Efecto del escaldado, de la velocidad de congelación y de descongelación sobre la calidad de la pulpa congelada de arazá (Eugenia stipitata Mc Vaught). Agron Colomb 2007;25:333-8.

Hernández-Gómez MS. Frutas tropicales poco conocidas : Usos y perspectivas. Acta Hortic 2011;906:109-14.

Narváez-cuenca CE. Extracción y medida de peroxidasa en pulpa de arazá (Eugenia stipitata MC Vaugh). Quim Nova 2008;31:2047-51.

Martillo M, Apolo G, Duque A. Fruta amazónica arazá. Rev Caribeña Ciencias Soc 2014;9:1-16.

Zhigui E. Obtención de un colorante natura a partir de la pulpa de arazá (Eugenia stipitata); 2015.

Cuellar F, Ariza E, Anzola C, Restrepo P. Estudio de la capacidad antioxidante del arazá (Eugenia stipitata Mc Vaugh) durante la maduración. Rev Colomb Química 2013;42:21-8.

Garzón G, Narváez-Cuenca C, Kopec RE, Barry AM, Riedl KM, Schwartz SJ. Determination of carotenoids, total phenolic content, and antioxidant activity of arazá (Eugenia stipitata McVaugh), an amazonian fruit. Agric Food Chem 2012;60:4709-17.

Neri-Numa IA, Carvalho-Silva LB, Morales JP, Malta LG, Muramoto MT, Ferreira JE, et al. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc vaugh — myrtaceae) of the Brazilian amazon forest. Food Res 2013;50:70-6.

De Souza Schmidt AE, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of brazilian native fruits and commercial frozen pulps. J Agric Food Chem 2010;58:4666-74.

Rogez H, Buxant R, Mignolet E, Souza JN, Silva EM, Larondelle Y. Chemical composition of the pulp of three typical Amazonian fruits: Araza-boi (Eugenia stipitata), bacuri (Platonia insignis) and cupuacu (Theobroma grandiflorum). Eur Food Res Technol 2004;218:380-4.

Narváez-cuenca CE, Silva-Bustos KJ, Restrepo-Sánchez LP. Effects of thermal processing combined with sucrose on the vitamin C content, total phenolic content, antioxidant activity, and sensory characteristics of arazá (Eugenia stipitata McVaugh) purée during frozen storage. Agron Colomb 2015;33:212-9.

Vargas AM, Rivera Ã, Narváez E. Capacidad antioxidante durante la maduración de arazá (Eugenia stipitata Mc Vaugh). Rev Colomb Química 2005;34:57-65.

CORTOLIMA. Agenda Ambiental del Municipio de San Sebastián de Mariquita. Mariquita: Corporación Autónoma Regional del Tolima; 2011.

AOAC. Official Methods of Analysis. 16th ed. Washington DC, USA: Association of Official Analytical Chemists; 1995.

Nelson N. A photometric adaptation of the somogyi method for the determination of glucose. J Biol Chem 1944;153:375-80.

Harborne JB. Phytochemical methods; A guide to modern techniques of plant analysis. J Chem Inform Modeling 1998;33:182-9.

Chunduri JR, Shah HR. FTIR phytochemical fingerprinting and antioxidant anlyses of selected indoor non-flowering indoor plants and their industrial importance. Int J Curr Pharm Res 2016;8:37-43.

Thangaraj P. In: Rainsford KD, editor. Pharmacological Assays of Plant-Based Natural Products. Coimbatore: Department of Botany, Bharathiar University; 2016. p. 49-53.

Delpino-Rius A, Eras J, Vilaró F, Cubero MÃ, Balcells M, Canela- Garayoa R. Characterisation of phenolic compounds in processed fibres from the juice industry. Food Chem 2015;172:575-84.

Braca A, Sortino C, Politi M, Morelli I, Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J Ethnopharmacol 2002;79:379-81.

Marquina V, Araujo L, Ruíz J, Rodríguez-Malaver A, Vit P. Composición química y capacidad antioxidante en fruta, pulpa y mermelada de guayaba (Psidium guajava L.). Arch Latinoam Nutr 2008;58:98-102.

Weng XC, Huang Y. Relationship structure-antioxidant activity of hindered phenolic compounds. GrasasAceites 2014;65:e051.

Zapata S, Piedrahita AM, Rojano B. Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspect Nutr Hum 2014;16:25-36.

Zapata K, Cortes FB, Rojano BA. Polifenoles y actividad antioxidante del fruto de guayaba agria (Psidium araca). Inf Tecnol 2013;24:103-12.

Kusmardiyani S, Novita G, Fidrianny I. Antioxidant activities from various extracts of different parts of kelakai (Stenochlaena Palustris) grown in central Kalimantan-Indonesia. Asian J Pharm Clin Res 2016;9:215-9.

Duran M, Montero P, Marrugo Y. Extractos metanólicos de corteza de guayaba (Psidium guajava l.) y mango (Mangifera indica L.): Efecto citotóxico, antihemolítico y en la morfología de membrana de eritrocitos. Rev UDCA Actual Divulg Científica 2013;16:327-34.

Pica Y. Ensayo de Toxicidad con el Nemátodo Panagrellus redivivus. México: Ensayos Para Agua Dulce; 1980. p. 139-54.

Van Wyk JA, Mayhew E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J Vet Res 2013;80:1-14.

Paolini V, Bergeaud JP, Grisez C, Prevot F, Dorchies P, Hoste H. Effects of condensed tannins on goats experimentally infected with Haemonchus contortus. Vet Parasitol 2003;113:253-61.

de Souza A, Beltrao M. Phenotypic Protocols for Gastrointestinal Nematodes. Methodologies for Diagnosis of Resistance and Detection of Active Substances in Ruminant Parasites; 2009. p. 24-54.

González-Garduño R, López-Arellano ME, Ojeda-Robertos N, Liébano-Hernández E, Gives PM. Diagnóstico in vitro y en campo de resistencia antihelmíntica en nematodos gastrointestinales de pequeños rumiantes. Arch Med Vet 2014;46:399-405.

Laboratorio de Genómica viral y Humana Facultad de Medicina Universidad Autonoma de San Luis Potosi. Aislamiento de Células Mononucleares Humanas por Gradiente de Ficoll. México: Laboratorio de Genómica Viral y Humana Facultad de Medicina Universidad Autonoma de San Luis Potosi; 2013. p. 1-4.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.

Patel S, Gheewala N, Suthar A, Shah A. In-vitro cytotoxicity activity of Solanum nigrum extract against hela cell line and vero cell line. Int J Pharm Pharm Sci 2009;1:38-47.

Akamine E, Goo T. Respiration and ethylene production in fruits of species and cultivars of Psidium and species of Eugenia. J Am Soc Hortic Sci 1979;98:381-3.

Galvis JA, Hernández MS. Comportamiento fisiológico del arazá bajo diferentes temperaturas de almacenamiento (Arazá physiological behavior under different storage temperatures). Colomb Amaz 1993;6:123-34.

Pérez RM, Mitchell S, Vargas R. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2008;117:1-27.

Barrantes R, Yaya D, Arias G. Estudio químico bromatológico de diferentes individuos de Eugenia stipitata Mc Vaugh (Arazá). Cienc Invest 2002;1:37-43.

Onwuka GI. Food Analysis and Instrumentation: Theory and Practice. Lagos: Naphthali Print; 2005. p. 133-7.

Intagri SC. Importancia del Azufre (S) en las Plantas. Nutrición Vegetal. Guanajuato-México: Intagri; 2016. p. 1.

Rodríguez C. Efecto del Nitrógeno, Fósforo y Potasio en el Crecimiento y Producción de Plántulas de Tomate (Lycopersicum eculentun Mill) Var Floradade. Nuevo León: Universidad Autónoma de Nuevo León; 1998.

Cooman A, Torres C, Fischer G. Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta. II. Efecto de la oferta de calcio, boro y cobre. Agron Colomb 2005;23:74-82.

Foye WO, Lemke DA, Williams DA. Foye´s Principles of Medicinal Chemistry. 6th ed. Philadelphiap, PA: Lippincott Williams and Wilkins; 2008. p. 44-5.

Neira A, Ramírez M. Actividad antibacteriana de extractos dos especies de guayaba contra Streptococus muntans y Escherichia coli. Rev Actual Biol 2005;27:27-30.

Castro H, Restrepo P, Parada F. Semillas de guayaba: Residuo o subproducto? In: Bogotá S, editor. Desarrollo De Productos Funcionales Promisorios A Partir De La Guayaba (Psidium guajava L) Para El Fortalecimiento De La Cadena Productiva. Bogotá: Universidad Nacional de Colombia; 2010. p. 189-98.

Porras A, López-Malo A. Importance of phenolic groups in foods. SelectTop Food Eng 2009;3:121-34.

Ashok P, Upadhyaya K. Tannins are astringent. J Pharmacogn Phytochem 2012;1:45-50.

Jaramillo M, Salinas V, Ochoa G. Los antioxidantes de los alimentos y su relación con las enfermedades crónicas. El Chocolate y su Contenido de Antioxidantes. Medellín: Sociedad Colombiana de Cardiologia; 2004. p. 43.

Machado TB, Pinto AV, Pinto MC, Leal IC, Silva MG, Amaral AC, et al. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2003;21:279-84.

Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, Kim TG, et al. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull 2004;27:544-7.

Kim YC, An RB, Yoon NY, Nam TJ, Choi JS. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells. Arch Pharm Res 2005;28:1376-80.

Caballero-George C, Vanderheyden PM, De Bruyne T, Shahat AA, Van Den Heuvel H, Solis PN, et al. In vitro inhibition of [3H]-angiotensin II binding on the human AT1 receptor by proanthocyanidins from Guazuma ulmifolia bark. Planta Med 2002;68:1066-71.

Okuda T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 2005;66:2012-31.

Fumagalli F, Rossoni M, Iriti M, Di Gennaro A, Faoro F, Borroni E, et al. From field to health: A simple way to increase the nutraceutical content of grape as shown by NO-dependent vascular relaxation. J Agric Food Chem 2006;54:5344-9.

Mura F. Estudio de la Actividad Antioxidante y Potencial Capacidad Citotóxica en Células Leucémicas de la línea HL-60 de Nuevos Compuestos Derivados de Ãcido Hidroxicinámico. Portugal: Universidad de Chile; 2016.

Houssay BA. El descubrimiento de la diabetes pancreática. Rev Argentina Endocrinol Metab 2015;52:2-7.

Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 1995;28:25-30.

Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 2006;19:669-75.

Ayala H, Iannacone J, Alvariño L. Toxicity of five botanical aqueous extracts on Panagrellus redivivus. Neotrop Helminthol 2017;11:139-55.

Githiori JB, Athanasiadou S, Thamsborg SM. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol 2006;139:308-20.

Bernal A, Camargo Ã. Efecto in vitro de los taninos condensados de las plantas Leucaena leucocephala, Calliandra calothyrsus y Flemingia macrophylla sobre Huevos y Larvas (L3) de Nemátodos Gastrointestinales de Ovinos. Bogotá: Universidad de La Salle; 2016.

Partap S, Kumar S, Kumar A, Sharma NK, Jha KK. In-vitro anthelmintic activity of Luffa cylindrica leaves in indian adult earthworm. J Pharmacogn Phytochem 2012;1:27-30.

Coop RL, Kyriazakis I. Nutrition–parasite interaction. Vet Parasitol 1999;84:187-204.

Koski KG, Scott ME. Gastrointestinal nematodes, trace elements, and immunity. J Trace Elem Exp Med 2003;16:237-51.

Rodríguez-Feo JA, Gómez J, Núñez A, Rico L, Fortes J, De AR, et al. Doxazosina y guanilato ciclasa soluble en un modelo de ratas hipertensas. Rev Española Cardiol 2001;54:880-6.



How to Cite

Álvarez, A., ÁNGEL . JIMÉNEZ, J. . MÉNDEZ, and E. Murillo. “CHEMICAL AND BIOLOGICAL STUDY OF EUGENIA STIPITATA MC VAUGH COLLECTED IN THE COLOMBIAN ANDEAN REGION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 12, Dec. 2018, pp. 362-9, doi:10.22159/ajpcr.2018.v11i12.27253.



Original Article(s)