Novel Geobacillus thermoleovorans KNG 112 Thermophilic Bacteria from Bandaru Hot Spring: A Potential Producer of Thermostable enzymes.

Authors

  • KOTRESH KR kuvempu university
  • SHIVAYOGEESWAR NEELAGUND kuvempu university
  • GURUMURTHY DM GM institute of technology

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i1.36008

Keywords:

Amylase , Lipase, Thermophillic, Geobacillus thermoleovorans, Phylogentic

Abstract

Amylase and lipase producing novel bacterium (strain IC5) were isolated from Bandaru hot spring, Karnataka, India. The cell was found to be thermophilic, gram-positive, aerobic, non-motile, capable of growing at different optimum parameters of pH 7,  temperature 55°C and tolerated maximally 0-8% (w/v) NaCl, which has the ability to show good amylotic and lipolytic activities.  Phylogenetic analysis of the bacterium using the 16S rRNA gene was revealed that the strain belongs to genus Geobacillus. The isolated strain IC5 was in close resemblance with the gene of Geobacillus thermoleovorans EC-5 having 99% of similarities. During the production of amylase, the maximum activity was found when temperature and pH ranged from 50 to 60 ºC and from 7 to 8 respectively. The strain used starch as a carbon source with an agitation speed of 120rpm for maximal amylase production.

Downloads

Download data is not yet available.

Author Biographies

KOTRESH KR, kuvempu university

Research scholar, department of biochemistry,kuvempu university, shankaraghatta, Shimoga,Karnataka, India-577451

SHIVAYOGEESWAR NEELAGUND, kuvempu university

Associate professor, department of biochemistry, kuvempu university, shanakaraghatta, Shimoga, Karnataka, India-577451

GURUMURTHY DM, GM institute of technology

Assistant professor, Department of Biotechnology, GM institute of technology, Davanagere, Karnataka, India-577006,

References

1. Koji M, Hongik K, Takeshi K, Satoshi H. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 2003;7:283–290.
2. Chien, David B. Edgar, John M. Trela. Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus aquaticus. Journal Of Bacteriology 1976;127: 1550-1557.
3. Snaedis HB, Solveig KP, Gudmundur OH, Sigurlaug S, Sigridur H, Johann A, et al. Thermus islandicus sp. nov., a mixotrophic sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area. International Journal of Systematic and Evolutionary Microbiology 2009;59: 2962–2966.
4. Everroad RC, Otaki H, Matsuura K, Haruta S. Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ 2012;27(4):374-81.
5. Manuel F, Olga G, Ana B, Peter NG. Mining enzymes from extreme environments. Current Opinion in Microbiology 2007;10:207-214.
6. Elizabeth AB, Isaac DW, Juergen W. Thermal Environments and Biodiversity. Physiology and Biochemistry of Extremophiles 2007;13-29.
7. Michael TM, John M, Dunlap PV, Clark DP. Brock Biology of Microorganisms. International Microbiology 2008;11:65-73.
8. Jean FP, Carlo RC, Charles KL, Georgia LJW, David WEvans, Mathew B. Microbial biogeography of 925 geothermal springs in New Zealand. Nature communications 2018; 9:2876.
9. Balsam TM, Hala IAD, Atef J, Saleh A, Christian K. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. International Journal of Microbiology2017; Article ID 6943952.
10. Johnson DB, Okibe N, Roberto FF. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 2003;180(1):60-8.
11. Stefania P, Federica V, Vincenzo R, Annalisa BP, Isabella M. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: a pilot study. Water Supply. 2017;18 (4):1456-1465.
12. Ahmet A, Hakan O, Ozlem B, Kadriye I, Medine G, Fikrettin S. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. Journal of Microbiological Methods 2009;79: 321–328.
13. Satpal S B, Nagendra ND, Tripathy NK. Indian Hot- Water Springs: A Bird’s Eye View. Journal of Energy, Environment & Carbon Credits 2016;1:1-15.
14. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL. Bacillus vulcani sp. nov. a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int. J. Syst. Evol. Microbiol 2000;50:2009–2012.
15. Miquel P. Monographie d’un bacille vivant au-dela de 70 °C. Ann Micrographic 1888; 1:3.
16. Sensudip K, Raut S, Satpathy S, Rout PR, Bandyopadhyay B, Das M Pradeep Kumar. Characterizing Novel Thermophilic Amylase Producing Bacteria From Taptapani Hot Spring, Odisha, India. Jundishapur J Microbiol 2014; 7: 11-18.
17. Thippeswamy S,Girigowda K, Mulimani VH. Isolation and identification of ?-amylase producing Bacillus sp. from dhal industry waste. Indian journal of biochemistry & biophysics 2006;43(5):295-8
18. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. ?-Amylases from microbial sources—an overview on recent developments. Food Technol. Biotechnol 2006;44 (2): 173–184.
19. BurhanArikan.Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresource Technology 2008;99:3071-3076.
20. Takasaki Y. An amylase producing malto tetraose and malto pentaose from Bacillus circulans. Agr. Biol. Chem 1983;47: 2193–2199.
21. Messaoud EB, Ali MB, Elleuch N, Masmoudi NF, Bejar S. Purification and properties of a malto heptaose- and malto hexaose forming amylase produced by Bacillus subtilis US116. Enzyme Microb. Technol 2004;34:662–666.
22. Kirk O, Borchert TV, Fugslang CC. Industrial enzyme application. Curr. Opin. Biotechnol 2002;13:345–351.
23. Palacios HR, Schwarz PB, D Appolonia BL. Effect of ?-amylases from different sources on the retrogradation and recyclization of concentrated wheat starch gels: relationship to bread staling. J. Agr. Food. Chem 2004;52: 5978–5986.
24. Rajagopalan G, Krishnan C. Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 2008;99:3044–3050.
25. Reddy NS, Nimmagadda A, Sambasiva Rao KRS. An overview of the microbial ?-amylase family. Afr. J. Biotechnol 2003;2:645–648.
26. Viviána N, Eniko RT, Lee CK, Gábor S, Darah I, Ibrahim CO, et al. Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. Journal of Molecular Catalysis B: Enzymatic 2006; 141-148.
27. Niehaus F, Bertoldo C, Kahler M, Antranikian G. Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology 1999;51: 711–729.
28. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnology Advances 2001;19:627–662.
29. Rubin B, Dennis EA. Lipases: part B. Enzyme characterization and utilization. Methods in Enzymology 1997;286:3–563.
30. Gurumurthy DM, Neelagund SE. Molecular Characterization of Industrially Viable Extreme Thermostable Novel ?-amylase of Geobacillus sp. Iso5 Isolated from Geothermal Spring. Journal of Pure and Applied Microbiology 2012; 6(4):01-06.
31. Sevgi E, Gonul D, SerpilT. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity, Journal of Hazardous Materials 2007; 149: 720–724.
32. Davender K, Lalit K, Sushil N, Chand R, Rajinder P, Vijay KG. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research 2012;4 (4):1763-1770.
33. Ralph P Tittsler, Leslie AS. The use of semi-solid agar for the detection of bacterial motility. Journal of Bacteriology 1936;31:6.
34. Bradford M. Analytical Biochemistry 1976;72: 248–254.
35. Bernfeld P. ? and ? amylases. Methods Enzymol 1955;1:149–158.
36. Tamara NN, Elena VL , Andrei B. P, Tatyana PTourova , Alexandre AG, Diyana SS,et al . Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. International Journal of Systematic and Evolutionary Microbiology 2004;54: 2019–2024.
37. Avinash S, Anita P, Yogesh SS, Bhavesh K, Girish K. Characterization and identification of Geobacillus sp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. Journal of Basic Microbiology 2009; 49: 187 – 194.
38. Manas RS, Shakthimay K, Gourikutti P, Ramesh CR. Partial characterization and optimization of production of extracellular amylase from bacillus subtilis isoalted from culturable cow dung microflora. polish journal of microbiology 2006;55:289-296
39. Aguloglu FS, Enez B, Ozdemir S, Matpan BF. Purification and characterization of thermostable -amylase from thermophilic Anoxybacillus flavithermus. Carbohydrate Polymers 2014;102:144–150.
40. Kathiresan, Manivannan. Cellulose production by Penicillium fellutanum isolated from coastel mangrove rhizosphere soil, Research journal of microbiology 2006;1(5):438-442.
41. Bose K, Das D. Thermostable alpha-amylase production using Bacillus licheniformis NRRL B14368. Indian J ExpBiol 1996;34 (12):1279-82.
42. Malhotra R, Noorwez SM, Satyanarayana T. Production and partial characterization of thermostable and calcium-independent ?-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Letters in Applied Microbiology 2000;31:378-384.
43. Altaf AS, Abdul SQ, Imrana K, Chaudhry HA, Safia L, Muhammad AB, et al. Production and Partial Characterization of ????-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. Hindawi BioMed Research International 2017:01-09.

Published

07-01-2020

How to Cite

KR, K. ., S. . NEELAGUND, and G. . DM. “Novel Geobacillus Thermoleovorans KNG 112 Thermophilic Bacteria from Bandaru Hot Spring: A Potential Producer of Thermostable Enzymes”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 1, Jan. 2020, pp. 134-41, doi:10.22159/ajpcr.2020.v13i1.36008.

Issue

Section

Original Article(s)