MULTIDRUG-RESISTANCE PATTERNS AND DETECTION OF PstS GENE IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA FROM NSUKKA, SOUTHEAST NIGERIA

Authors

  • MARTINA C AGBO Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Nigeria.
  • IFEOMA M EZEONU Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
  • ANTHONY C IKE Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
  • CELESTINA C UGWU Department of Applied Microbiology and Brewing, Enugu State University of Science and Technology, Enugu, Nigeria.

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i4.36669

Keywords:

Pseudomonas aeruginosa, Antimicrobial resistance, Multidrug-resistant Pseudomonas aeruginosa, Extensively drug-resistant, PstS gene

Abstract

Objective: This study was aimed to determine the antibiotic resistance patterns of clinical Pseudomonas aeruginosa isolates and to detect the presence of PstS gene.

Methods: One hundred and ninety-two clinical isolates of P. aeruginosa were characterized using polymerase chain reaction (PCR) and 16S rDNA sequencing. Antibiotic resistance patterns were determined using the disk diffusion method, while the minimum inhibitory concentrations (MICs) of selected antibiotics against resistant isolates were determined by macro broth dilution and E-test strip methods. The resistant isolates were screened for the presence of PstS gene using PCR.

Results: Of 192 clinical isolates of P. aeruginosa, 136 (70.83%) were resistant to at least two antibiotics. Of these, 135 (99%) could be classified as multidrug-resistant P. aeruginosa (MDR-PA), 63 (46%) were extensively drug-resistant (XDR-PA), while 38 (28%) were pandrug-resistant (PDR-PA). The isolates exhibited high level of resistance to cefotaxime and ticarcillin, and low levels of resistance to meropenem and imipenem. The MIC values for meropenem against the resistant isolates were generally <32 mg/L, while the values for other antibiotics ranged from 32 to >128 mg/L. Multiple antibiotic resistance indexes of the MDR-PA ranged from 0.27 to 0.91 and the most prevalent pattern of resistance was PiperacillinR – TicarcillinR – Piperacillin/TazobactamR – CefotaximeR – CeftazidimeR – GentamicnR – TobramycinR– CiprofloxacinR. About 50% of the resistant isolates possessed the PstS gene.

Conclusions: The results confirmed the presence of XDR, PDRPA, and PstS gene in P. aeruginosa strains. There is an urgent need for healthcare practitioners to address the problem of multidrug resistance, by implementing a more rational and appropriate use of antibiotics.

Downloads

Download data is not yet available.

References

Jefferies JM, Cooper T, Yam T, Clarke SC. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit-a systematic review of risk factors and environmental sources. J Med Microbiol 2012;61:1052-61.

Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010;10:441-51.

Alnour TM, Ahmed-Abakur EH. Multidrug resistant Pseudomonas aeruginosa: Medical impact, pathogenicity, resistance mechanisms and epidemiology. JSM Microbiol 2017;5:1046.

Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-resistant Pseudomonas Infections: Hard to treat, but hope on the horizon? Curr Infect Dis Rep 2018;20:23.

Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS One 2018;13:e0193431.

Porras-Gómez M, Vega-Baudrit J, SNúñez-Corrales S. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. J Biomater Nanobiotechnol 2012;3:519-27.

Mahmoud AB, Zahran WA, Hindawi GR, Labib AZ, Galal R. Prevalence of multidrug-resistant Pseudomonas aeruginosa in patients with nosocomial infections at a University hospital in Egypt, with special reference to typing methods. J Virol Microbiol 2013;2013:1-13.

Todar K. Pseudomonas aeruginasa. In: Online Textbook for Bacteriology. Madison, WI: Kenneth Todar, University of Wisconsin-Madison Department of Bacteriology; 2008.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-81.

Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005;11 Suppl 4:17-32.

Inacio HS, Bomfim MR, França RO, Farias LM, Carvalho MA, Serufo JC, et al. Phenotypic and genotypic diversity of multidrug-resistant Pseudomonas aeruginosa isolates from bloodstream infections recovered in the hospitals of Belo Horizonte, Brazil. Chemotherapy 2014;60:54-62.

Barrios CC, Ciancotti-Oliver L, Bautista-Rentero D, Adán-Tomás C, Zanón-Viguer V. A new treatment choice against multi-drug resistant Pseudomonas aeruginosa: Doripenem. J Bacteriol Parasitol 2014;5:199.

Reardon S. Antibiotic resistance sweeping developing world. Nature 2014;509:141-2.

Zaborina O, Holbrook C, Chen Y, Long J, Zaborin A, Morozova I, et al. Structure-function aspects of PstS in multi-drug-resistant Pseudomonas aeruginosa. PLoS Pathog 2008;4:e43.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-fourth Informational Supplement. Vol. 34. United States: Clinical and Laboratory Standards Institute; 2014. p. M100-S24.

Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 1983;46:165-70.

Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: Resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007;13:560-78.

Paranjothi S, Dheepa R. Screening for multidrug resistance Bacteria Pseudomonas aeruginosa in hospitalized patient in Hosur, Krishnagiri (DT). Int J Pharm Bio Sci 2010;1:1-15.

Senthamarai S, Reddy AS, Sivasankari S, Anitha C, Somasunder V, Kumudhavathi MS, et al. Resistance pattern of Pseudomonas aeruginosa in a tertiary care hospital of Kanchipuram, Tamilnadu, India. J Clin Diagn Res 2014;8:DC30-2.

Ghanbarzadeh Corehtash Z, Khorshidi A, Firoozeh F, Akbari H, Mahmoudi Aznaveh A. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015;8:e22345.

Thomas BT, Agu GC, Makanjuola SO, Davies A. Plasmid profiling and antibiotic resistance of extended spectrum beta lactamases producing Pseudomonas aeruginosa expressing AMPC beta-lactamase enzyme. Am Eurasian J Sci Res 2015;10:109-117.

Mendiratta DK, Deotale V, Narang P. Metallo-beta-lactamase producing Pseudomonas aeruginosa in a hospital from a rural area. Indian J Med Res 2005;121:701-3.

Bashir D, Thakar MA, Fomda BA, Bash G, Zahoor D, Ahmad SA, et al. Detection of metallobeta-lactamases (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afr J Microbiol Res 2011;5:164-72.

Tripathi P, Banerjee G, Saxena S, Gupta MK, Ramteke PW. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infection. Afr J Microbiol Res 2011;5:2955-9.

Xiao H, Ye X, Liu Q, Li L. Antibiotic susceptibility and genotype patterns of Pseudomonas aeruginosa from mechanical ventilation-associated pneumonia in intensive care units. Biomed Rep 2013;1:589-93.

Jayanthi S, Jeya M. Plasmid profile analysis and bla VIM gene detection of metalo β-lactamase (MBL) producing Pseudomonas aeruginosa isolates from clinical samples. J Clin Diagn Res 2014;8:DC16-9.

Shaikh S, Fatima J, Shakil S, Danish Rizvi SM, Kamal MA. Prevalence of multidrug resistant and extended spectrum beta-lactamase producing Pseudomonas aeruginosa in a tertiary care hospital. Saudi J Biol Sci 2015;22:62-4.

Raafat MM, Ali-Tamma M, Ali AE. Phenotypic and genotypic characterization of Pseudomonas aeruginosa isolates from Egyptian hospital. Afr J Microbiol Res 2016;10:1645-53.

Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, et al. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Med Iran 2011;49:675-9.

Akingbade OA, Balogun SA, Ojo DA, Afolabi RO, Motaya BO, Okerentugbe PO, et al. Plasmid profile analysis of multi-drug resistant Pseudomonas aeruginosa isolated from wound infections in South West Nigeria. World Appl Sci J 2012;20:766-775.

Paul S, Bezbaruah RL, Roy MK, Ghosh AC. Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa. Lett Appl Microbiol 1997;24:169-71.

Published

07-04-2020

How to Cite

C AGBO, M., I. M EZEONU, A. C IKE, and C. C UGWU. “MULTIDRUG-RESISTANCE PATTERNS AND DETECTION OF PstS GENE IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA FROM NSUKKA, SOUTHEAST NIGERIA”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 4, Apr. 2020, pp. 115-9, doi:10.22159/ajpcr.2020.v13i4.36669.

Issue

Section

Original Article(s)