HERBAL NANOSUSPENSION: IN VITRO CANCER STUDY AGAINST DIFFERENT CELL LINES

Authors

  • MITHRA MM Department of Pharmaceutics, St. James’ College of Pharmaceutical Sciences, St. James’ Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Kerala, India.
  • KRISHNAKUMAR K Department of Pharmaceutics, St. James’ College of Pharmaceutical Sciences, St. James’ Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Kerala, India.
  • SMITHA K NAIR Department of Pharmaceutics, St. James’ College of Pharmaceutical Sciences, St. James’ Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Kerala, India.

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i7.37764

Keywords:

Nanosuspension, Herbal, In vitro cell lines

Abstract

Herbal formulations marketed in India for many years providing its therapeutic benefits in health problems. Medicinal plants or their phytoconstituents are less toxic and free from side effects than synthetic drugs. However, formulation aspects of these phytoconstituents are limited due to its low solubility. Nanotechnology is a promising technique to increase the solubility of herbal drugs. This will lead to a subsequent reduction in drug dose. Nanoformulations such as nanosuspension increase the solubility of poorly soluble drugs and also have good targeting effects on different cells. The efficacy of herbal nanosuspensions evaluated using different cell lines. Here, hepatocellular carcinoma cell line (SMMC-7721), human prostate cancer cell line, human myelogenous leukemia cell line, human epithelial cell line, human breast cancer cell lines (4T1, MCF-7, and MDA-MB-453), carcinomic human alveolar basal epithelial cell line (A549), human umbilical vein endothelial cell line, human colorectal adenocarcinoma cell line (HT-29), and human epithelial carcinoma cell line (HeLa) are used in the evaluation procedures. In vitro assays help in the determination of the dose range of drugs for the activity. The present review highlights the in vitro cancer studies of herbal nanosuspensions using different cell lines.

Downloads

Download data is not yet available.

References

Mishra SB, Pandey H, Pandey AC. Nanosuspension of Phyllanthus amarus extract for improving oral bioavailability and prevention of paracetamol induced hepatotoxicity in Sprague-Dawly rats. Adv Natl Sci Nanotechnol 2013;4:1-6.

Jahan N, Aslam S, Rahman UK, Fazal T, Anwar F, Saher R. Formulation and characterization of nanosuspension of herbal extract for enhanced antiradical potential. J Exp Nanosci 2015;11:72-80.

Duthie SJ, Melvin WT, Burke MD. Bromobenzene detoxification in the human liver-derived HepG2 cell line. Xenobiotica 1994;24:265-79.

Available from: https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-line.

Pareek A, Godavarthi A, Issarani R, Nagori BP. Antioxidant and hepatoprotective activity of Fagonia schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in HepG2 cell line and rats. J Ethnopharmacol 2013;150:973-81.

Available from: http://www.biologydiscussion.com/cell/cell-lines/ cell-lines-types-nomenclature-selection-and-maintenance-with-statistics/10517.

Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner J, et al. Curcumin a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004;304:600-2.

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007;4:807-18.

Kuttan R, Sudheeran PC, Joseph CD. Turmeric and curcumin as topical agents in cancer therapy. Tumori 1987;73:29-31.

Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001;21:2895-900.

Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 2004;10:6847-54.

Kurd SK, Smith N, Van VA, Troxel AB, Badmaev V, Seykora JT, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinicaltrial. J Am Acad Dermatol 2008;58:625-31.

Singh M, Singh N. Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 2009;325:107-19.

Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009;41:40-59.

Rahbari R, Sheahan T, Modes V, Collier P, Macfarlane C, Badge RM. A novel L1 retrotransposon marker for HeLa cell line identification. Biotechniques 2009;46:277-84.

Masters JR. HeLa cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer 2002;2:315-9.

MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 1999;83:555-63.

Stephenson EM. Locomotory invasion of human cervical epithelium and avian fibroblasts by HeLa cells in vitro. J Cell Sci 1982;57:293-314.

Available from: https://www.nobelprize.org/prizes/medicine/2009/ press-release.

Available from: https://www.vansmith.me/2017/11/12/wonder-women-the-life-death-and-life-after-death-of-henrietta-lacks-unwitting-heroine-of-modern-medical-science.

Jongen LM. BCR/ABL mediated downregulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CCL19 CCL21 in primary BCR/ABL positive cells. Leukemia 2005;19:373-80.

Hong J, Liu Y, Xiao Y, Yang X, Su W, Zhang M, et al. High drug payload curcumin nanosuspensions stabilized by Mpeg-dspe and SPC: In vitro and in vivo evaluation. Drug Deliv 2017;24:109-20.

Velebny S, Hrckova G, Konigova A. Reduction of oxidative stress and liver injury following silymarin and praziquantel treatment in mice with mesocestoides vogae (cestoda) infection. Parasitol Int 2010;59:524-31.

Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS. Flavonoid silibinin inhibits proliferation and promotes cell cycle arrest of human colon cancer. J Surg Res 2007;143:58-65.

Bhatia NZ, Woif MD, Agarwal R. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin an active constituent of milk thistle; comparison with silymarin. Cancer Lett 1999;147:77-84.

Esfahani MA, Reisi N, Mirmoghtadaei M. Evaluating the safety and efficacy of silymarin in β-thalassemia patients: A review. Hemoglobin 2015;39:75-80.

Balouchi S, Gharagozloo M, Esmaeil N, Mirmoghtadaei M, Moayedi B. Serum levels of TGFβ, IL-10, IL-17, and IL-23 cytokines in β-thalassemia major patients: The impact of silymarin therapy. Immunopharmacol Immunotoxicol 2014;36:271-4.

Available from: https://www.assets.thermofisher.com/TFSAssets/BID/ Handbooks/cancer-cell-culture-basics-handbook.pdf.

Timm C, Gupta A, Yin J. Robust kinetics of an RNA virus: Transcription rates are set by genome levels. Biotechnol Bioeng 2015;112:1655-62.

Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005;280:36529-40.

Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011;71:1668-79.

Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line(PC-3). Invest Oncol 1979;17:16-23.

Zheng D, Wang Y, Zhang D, Liu Z, Duan C, Jia L, et al. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett 2011;307:158-64.

Beck RC, Pohlmann AR, Hoffmeister C, Gallas MR, Collnot E, Schaefer UF. Dexamethasone-loaded nanoparticle coated microparticles: Correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. Eur J Pharm Biopharm 2007;67:18-30.

Available from: https://www.readycell.com/cacoready.

Wang Y, Zhang D, Liu Z, Liu G, Duan C, Jia L, et al. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 2010;21:1-12.

Chen S, Gao J, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. The cytostatic and cytotoxic effects of oridonin (rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol 2005;26:579-88.

Zhang JX, Han QB, Zhao AH, Sun HD. Diterpenoids from Isodon japonica. Fitoterapia 2003;74:435-8.

Osawa K, Yasuda H, Maruyama T, Morita H, Takeya K, Itokawa H. Antibacterial trichorabdal diterpenes from Rabdosia trichocarpa. Phytochemistry1994;36:1287-91.

Gao L, Zhang DR, Chen MH, Duan CX, Dai WT, Jia LJ, et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspension. Int J Pharm 2008;355:321-7.

Ikezoe, T, Chen SS, Tong XJ, Heber D, Taguchi H, Koeffler HP. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cell. Int J Oncol 2003;23:1187-93.

Ikezoe T, Chen SS, Tong XJ, Heber D, Taguchi H, Koeffler HP. Pancreatic cancer in vitro toxicity mediated by Chinese herbs SPES and PC-SPES: Implications for monotherapy and combination treatment. Cancer Lett 2003;189:59-68.

Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS. A multipotential leukemia cell line (K562) of human origin. Proc Soc Exp Biol Med 1981;166:546-50.

Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 1976;18:421-31.

Andersson LC, Nilsson K, Gahmberg CG. K562-a human erythroleukemic cell line. Int J Cancer 1979;23:143-7.

Lozzio BB, Lozzio CB. Properties and usefulness of the original k-562 human myelogenous leukemia cell line. Leuk Res 1979;3:363-70.

Available from: https://www.elsevier.com/books/the-leukemia-lymphoma-cell-line-factsbook/drexler/978-0-12-221970-2.

Lou H, Zhang X, Gao L, Feng F, Wang J, Wei X, et al. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009;379:181-6.

Available from: http://www.altogenlabs.com/xenograft-models/liver-cancer-xenograft/smmc-7721-xenograft -model.

Loua H, Gaob L, Weia X, Zhanga Z, Zhangc D, Zhanga X. Oridonin nanosuspension enhances anti-tumor efficacy in SMMC-7721 cells and H22 tumor bearing mice. Colloids Surf B Biointerfaces 2011;87:319-25.

Li Q, Cheng H, Zhu G. Gambogenic acid inhibits proliferation of A549 cells through apoptosis inducing and cell cycle arresting. Biol Pharm Bull 2010;33:415-20.

Zhou A, Li QL, Peng DY. Determination of the content of gambogic acid and gambogenic acid in gamboge by HPLC. J Sep Sci 2008;15:53-4.

Gonzalez TL, Minsky WN, Espinosa ME, Aranda SR, Meseguer PJ, Perez CP. In vitro assessment of hepatoprotective agents against damage induced by acetaminophen and CCl4. BMC Complement Altern Med 2017;17:39.

Donato MT, Tolosa L, Lechon JG. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol 2014;1250:77-93.

Available from: http://www.hepg2.com.

Theard D, Steiner M, Kalicharan D, Hoekstra D, Sven CD, Van IJ. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/β catenin based adherens junctions. Mol Biol Cell 2007;18:2313-21.

Moscato S, Ronca F, Campani D, Dantil S. Poly(vinyl alcohol)/gelatin hydrogels cultured with HepG2 cells as a 3D model of hepatocellular carcinoma: A morphological study. J Funct Biomater 2015;6:16-32.

Yuan H, Li X, Zhang C, Pan W, Liang Y, Chen Y, et al. Nanosuspension as delivery system for gambogenic acid: Characterization and in vitro/ in vivo evaluation. Drug Deliv 2015;2:1-8.

Altinier G, Sosa S, Aquino R, Mencherini T, Loggia DR, Tubaro A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L. J Agric Food Chem 2007;55:1718-23.

Sadhu SK, Okuyama E, Fujimoto H. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. J Ethnopharmacol 2006;108:371-8.

Li YN, Yin LH, Xu LN, Peng JY. A simple and efficient protocol for large-scale preparation of three flavonoids from the flower of Daphne genkwa by combination of macroporous resin and counter-current chromatography. J Sep Sci 2010;33:2168-75.

Gao Y, Liu F, Fang L, Cai R, Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/ MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One 2014;9:e96741.

Martini ND, Katerere DR, Eloff JN. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol 2004;93:207-12.

Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, et al. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res 2003;17:123-8.

Kim AR, Zou YN, Park TH, Shim KH, Kim MS, Kim ND, et al. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity. Phytother Res 2004;18:1-7.

Suh N, Luyengi L, Fong HH, Kinghorn AD, Pezzuto JM. Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a model. Anticancer Res 1995;15:233-9.

Brozic P, Kocbek P, Sova M, Kristl J, Martens S, Adamski J, et al. Flavonoids and cinnamic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase Type 1. Mol Cell Endocrinol 2009;301:229-34.

Pulaski BA, Ostrand RS. Mouse 4T1 breast tumor model. Curr Protoc Immunol 2001;20:unit 20.2.

Yang S, Zhang JJ, Huang XY. Mouse models for tumor metastasis. Methods Mol Biol 2012;928:221-8.

Bryan D, Thorpe JE, Disch BC, Bastian A, Hauser PJ, Farasyn T, et al. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS One 2014;9:e98624.

Ismail MM, Soliman DH, Farrag AM, Sabour R. Synthesis, antitumor activity, pharmacophore modeling, and QSAR studies of novel pyrazoles and pyrazolo[1,5-A] pyramidines against breast adenocarcinoma MCF- 7 cell line. Int J Pharm Pharm Sci 2016;8:434-42.

Adrian VL, Oesterreich S, Davidson NE. MCF-7 Cells-changing the course of breast cancer research and care for 45 years. J Natl Cancer Inst 2015;107:djv073.

Soule HD, Vazquez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 1973;51:1409-16.

Kao J, Salari K, Bocanegra M. molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009;4:e61446.

Hall RE, Birrell SN, Tilley WD, Sutherland RL. MDA-MB-453, an androgen-responsive human breast carcinoma cell line with high level androgen receptor expression. Eur J Cancer 1994;30A:484-90.

Available from: http://www.a549.com.

Durga M, Nathiya S, Devasena T. In vitro evaluation of cytotoxicity, oxidative stress, DNA damage and inflammation induced by diesel exhaust particles in human A549 lung cells and murine raw 264.7 macrophages. Int J Pharm Pharm Sci 2014;6:105-10.

Balashanmugam P, Mosachristas K, Kowsalya E. In vitro cytotoxicity and antioxidant evaluation of biogenic synthesized gold nanoparticles from marsilea quadrifolia on lung and ovarian cancer cells. Int J Appl Pharm 2018;10:153-8.

Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a Type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 1998;243:359-66.

Available from: https://www.abcam.com/a549-whole-cell-lysate-ab7910.html.

Thomas LH, Friedland JS, Sharland M, Becker S. Respiratory syncytial virus-induced RANTES production from human bronchial epithelial cells is dependent on nuclear factor-κB nuclear binding and is inhibited by adenovirus-mediated expression of inhibitor of κBα. J Immunol 1998;161:1007-16.

Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 1998;66:1121-6.

Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev 2006;2:93-102.

Jimenez N, Krouwer V, Post J. A new, rapid and reproducible method to obtain high quality endothelium in vitro. Cytotechnology 2012;65:1-14.

Li Y, Hong J, Li H, Qi X, Guo Y, Han M. Genkwanin nanosuspensions: A novel and potential antitumor drug in breast carcinoma therapy. Drug Deliv 2017;24:1491-500.

Overstreet DH, Kralic JE, Morrow AL, Ma ZZ, Zhang YW, Lee DY. NPI-031G (puerarin) reduces anxiogenic effects of alcohol withdrawal or benzodiazepine inverse or 5-HT2C agonists. Pharmacol Biochem Behav 2003;75:619-25.

Chen R, Xue J, Xie M. Puerarin prevents isoprenalineinduced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression. J Nutr Biochem 2012;23:1080-5.

Liu XJ, Zhao J, Gu XY. The effects of genistein and puerarin on the activation of nuclear factor-kappaB and the production of tumor necrosis factor-alpha in asthma patients. Pharmazie 2010;65:127-31.

Xiao C, Li J, Dong X, He X, Niu X, Liu C, et al. Anti-oxidative and TNF-alpha suppressive activities of puerarin derivative (4AC) in RAW264.7 cells and collagen-induced arthritic rats. Eur J Pharmacol 2011;666:242-50.

Wu L, Qiao H, Li Y, Li L. Cardioprotective effects of the combined use of puerarin and danshensu on acute ischemic myocardial injury in rats. Phytother Res 2011;21:751-6.

Zhang SY, Chen G, Wei PF, Huang XS, Dai Y, Shen YJ, et al. The effect of puerarin on serum nitric oxide concentration and myocardial eNOS expression in rats with myocardial infarction. J Asian Natl Prod Res 2008;10:373-81.

Gu L, Yang Y, Sun Y, Zheng X. Puerarin inhibits acid-sensing ion channels and protects against neuron death induced by acidosis. Planta Med 2010;76:583-8.

Zhu J, Wang X, Shang Y, Xie X, Zhang F, Chen J, et al. Puerarin reduces endothelial progenitor cells senescence through augmentation of telomerase activity. Vascul Pharmacol 2008;49:106-10.

Hu W, Zhang Q, Yang X, Wang Y, Sun L. Puerarin inhibits adhesion molecule expression in tnf-alpha-stimulated human endothelial cells via modulation of the nuclear factor kappaB pathway. Pharmacology 2010;85:27-35.

Meng XH, Ni C, Zhu L, Shen YL, Wang LL, Chen YY. Puerarin protects against high glucose-induced acute vascular dysfunction: Role of heme oxygenase-1 in rat thoracic aorta. Vascul Pharmacol 2009;50:110-5.

Zhou YX, Zhang H, Peng C. Peurarin: A review of pharmacological effects. Phytother Res 2014;28:961-75.

Available from: https://www.link.springer.com/ chapter/10.1007%2F978-3-319-16104-2-11.

Hirn M, Bivic A, Reggio H. HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation. Proc Natl Acad Sci 1988;85:136-40.

Coudray AM. Proliferation of the human colon carcinoma cell line HT29: Autocrine growth and deregulated expression of the c-myc oncogene. Cancer Res 1989;49:6566-71.

Cohen E. Induced differentiation in HT29, a human colon adenocarcinoma cell line. J Cell Sci 1999;112:2657-66.

Gout S, Marie C, Laine M, Block MR, Tavernier G, Sarlin MJ. Early enterocytic differentiation of HT-29 cells: Biochemical changes and strength increases of adherens junctions. Exp Cell Res 2004;299:498-510.

Wanga Y, Maa Y, Zheng Y, Song J, Yang X, Bi C. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int J Pharm 2013;441:728-35.

Published

07-07-2020

How to Cite

MM, M., K. K, and S. K NAIR. “HERBAL NANOSUSPENSION: IN VITRO CANCER STUDY AGAINST DIFFERENT CELL LINES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 7, July 2020, pp. 25-29, doi:10.22159/ajpcr.2020.v13i7.37764.

Issue

Section

Review Article(s)

Most read articles by the same author(s)