SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES USING AQUEOUS EXTRACT OF ASPARAGUS RACEMOSUS RHIZOME – AN IN VITRO APPROACH

Authors

  • HEMADEVI N Department of Biochemistry, Sengamala Thayaar Educational Trust Women’s College, Mannargudi, Tamil Nadu, India.
  • VENKATALAKSHMI P Department of Biochemistry, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i7.37861

Keywords:

Antimicrobial, Asparagus racemosus, Nanoparticles, Fourier transform infrared, Scanning electron microscopy, Ultraviolet-visible spectrophotometry

Abstract

Objective: The proposed study is carried out to synthesize and characterize silver nanoparticles (AgNPs) using rhizomes of Asparagus racemosus and to evaluate its antimicrobial activity in vitro.

Methods: Aqueous extract of A. racemosus rhizomes was prepared and subjected to preliminary phytochemical screening. AgNPs of A. racemosus rhizomes were prepared using standard procedure. The synthesized particles were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopic (SEM) analysis. Further, these nanoparticles were subjected to in vitro antimicrobial studies.

Results: Preliminary phytochemical analysis showed the presence of tannins, phlobatannins, saponins, flavonoids, terpenoids, triterpenoids, alkaloids, carbohydrates, proteins, anthraquinones, polyphenols, and glycosides. The study of synthesized AgNPs showed a sharp absorbance at 410 nm. The results of FTIR analysis confirmed the presence of phenol, alkanes, aliphatic amine, secondary alcohol, alkenes, and aromatic amines. SEM analysis of the AgNPs revealed higher density polydispersed AgNPs of various sizes. The AgNPs synthesized from rhizome extract showed higher toxicity toward tested microorganisms when compared to extract alone.

Conclusion: It has been concluded that silver nanoparticles of A. racemosus could be a good source of plant-derived antimicrobials.

Downloads

Download data is not yet available.

References

Venkatalakshmi P, Brindha P, Induja K. In-vitro anti oxidant and antitumor studies on Terminalia catappa bark. Int J Pharm Pharm Sci 2014;6:1-3.

Ghorbani HR, Safekordi AA, Attar H, Rezayat SM. Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 2011;25:317-26.

Quang HT, Van QN, Anh-Tuan L. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 2013;4:1-20.

Florence AT, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: Evolving vistas. Adv Drug Deliv Rev 2013;50:569-89.

Kirtikar KR, Basu BD. Indian Medicinal Plants. 2nd ed. India: International Book Publishers; 1987. p. 86-7.

Chawla A, Chawla P, Mangalesh R. Asparagus racemosus (Willd): Biological activities & its active principles. Indo Glob J Pharm Sci 2003;2:113-20.

Goyal R, Singh J, Lal H. Asparagus racemosus--an update. Indian J Med Sci 2011;57:408-14.

GomaseV, Sherkhane A. Isolation, structure elucidation and biotransformation studies on secondary metabolites from Asparagus racemosus. Int J Microbiol 2010;2:7-9.

Venkataramaiah H. Double-blind comparative clinical trial of abana and simvastatin in hyperlipidaemia. Stroke 2002;2002:???.

Sahu M, Gupta S, Srivastava P. Effect of renalka syrup in urinary tract infection. Indian Pract 2002;55:101-6.

Sharma M, Sharma A, Kumar A. Vital medicine Asparagus racemosus willd. Curr Trends Biotechnol Pharm 2012;6:210-21.

Singla R, Kaur R, Arora S, Jaitak V. In-vitro anti-mutagenic activity of Asparagus racemosus: An ayurvedic medicinal plant. Am J Drug Discov Dev 2013;3:286-92.

VenkatesanN, Thiyagarajan V, Narayanan S, Arul A, Raja S, Gurusamy S. Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals. J Pharm Pharm Sci 2005;8:39-46.

Potduang B, Meeploy M, Giwanon R, Benmart Y, Kaewduang M, Supatanakul W. Biological activities of Asparagus racemosus. Afr J Tradit Complement Altern Med 2008;5:230-7.

Visavadiya NP, Narasimhacharya A. Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats. Evid Based Complement Altern Med 2009;6:219-26.

Goel R, Sairam K. Anti-ulcer drugs from indigenous sources with emphasis on Musa sapientum, Tamara bhasma, Asparagus racemosus and Zingiber officinale. Indian J Pharmacol 2002;34:100-10.

Sofowara A. Medicinal Plants and Traditional Medicine in Africa. Ibadan, Nigeria: Spectrum Books Ltd.; 1993. p. 191-289.

Trease GE, Evans WC. Phenols and phenolic glycosides. In: Textbook of Pharmacognosy. 12th ed. London: Balliere Tindall; 1989. p. 343-83.

Harborne JB. Phytochemical Methods. London: Chapman and Hall Ltd.; 1973. p. 49-188.

Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Asit Baran M. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B Biointerfaces 2012;94:226-30.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493-6.

Venkatalakshmi P, Brindha P. Antimicrobial activity of aqueous extracts of different parts of Terminalia catappa L. Int J Curr Microbiol Appl Sci 2016;5:493-8.

Sasidharan A, Chandran P, Menon D, Raman S, Nair S, Koyakutty M. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale 2011;3:3657-69.

Chin SF, Iyer KS, Saunders M. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chemistry 2006;15:5661-5.

Ranjitham AM, Suja R, Caroling V, Tiwari S. In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterisation of Brassica oleracea. var. Bortrytis. L synthesized silver nanoparticles. Int J Pharm Pharm Sci 2013;5:239-51.

Swarnalatha L, Reddy P. Hepatoprotective activity of Sphaeranthus amaranthoides on D-galactosamine induced hepatitis in albino rats. Asian Pac J Trop Biomed 2013;2:1900-5.

Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus Colocynthis (L.) Schrad. J Nanobiotechnol 2011;9:43.

Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 2014;415:39-47.

Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013;31:346-56.

Mallikarjun K, Narsimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi S, et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nanomat Biostruct 2011;6:181-6.

Bonde SR, Rathod DP, Ingle AP, Ade RB, Gade AK, Rai MK. Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Methods 2012;1:25-36.

Huang YH, Hou WC, Lin RD, Lee TH, Hsu FL, Lee MH. The phenolic constituents and free radical scavenging activities of Gynura formosana Kiamnra. J Sci Food Agric 2005;85:615-21.

Chanda S. Silver nanoparticles (medicinal plants mediated): A new generation of antimicrobials to combat microbial pathogens-a review. In: Méndez-Vilas A, editor. Microbial Pathogens and Strategies for Combating them: Science, Technology and Education. Spain: Formatex; 2013. p. 1314-23.

Ó’Coinceanainn M, Astill C, Schumm S. Potentiometric, FTIR and NMR studies of the complexation of metals with theaflavin. Dalton Trans 2003;5:801-7.

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006;22:577-83.

Elumalai EK, Prasad TN, Hemachandran J, Therasa SV, Thirumalai T, David E. Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharmacol Sci Res 2010;2:549-54.

Shankar SS, Rai A, Ahmad A, Sastry MJ. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta Indica) leaf broth. J Collid Interface Sci 2004;275:496-502.

Ali DM, Sasikala M, Gunasekara M, Thajuddin N. Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei ntdm01. Digest J Nanometer Biostruct 2011;6:385-90.

Tona L, Kamlu K, Ngimbi M, Cimanga K, Vtientick AJ. Antiamoebic and phytochemical screening of some congolese medicinal plants. J Ethnopharmacol 1998;61:57-65.

Neelavathi P, Venkatalakshmi P, Brindha P. Antibacterial activities of aqueous and ethanolic extracts of Terminalia catappa leaves and bark against some pathogenic bacteria. Int J Pharm Pharm Sci 2013;5:114-20.

Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 2015;19:311-7.

Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016;12:789-99.

Published

07-07-2020

How to Cite

N, H., and V. P. “SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES USING AQUEOUS EXTRACT OF ASPARAGUS RACEMOSUS RHIZOME – AN IN VITRO APPROACH”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 7, July 2020, pp. 149-53, doi:10.22159/ajpcr.2020.v13i7.37861.

Issue

Section

Original Article(s)