REVIEW POTENT PHARMACEUTICAL PRODUCTS FROM AQUATIC PLANTS – REVIEW

Authors

  • SAXENA M K Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
  • SINGH NEERJA Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
  • KUMAR S Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
  • DOBHAL MP Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India.
  • DATTA S Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India

DOI:

https://doi.org/10.22159/ajpcr.2021.v14i1.39992

Keywords:

Aquatic plant`s secondary metabolites, Antioxidants, Flavonoids, Cancer, Triterpenes

Abstract

Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental BioTechniques and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics, and also as unique source of pharma industries for the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of compounds such as polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones, tannins, coumarins, and essential oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic, and antimitotic activities; thus making them a rich source of medicinal compounds. Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific research, and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites found in aquatic (algae) and terrestrial plants.

Downloads

Download data is not yet available.

Author Biographies

SAXENA M K, Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India

Capture.JPG

SINGH NEERJA, Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India

Photo-Neerja.jpg

KUMAR S, Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India

DLB10177436_photograph.jpg

References

Kurashov EA, Krylova JV, Mitrukova GG, Chernova AM. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems. Contemp Probl Ecol 2014;7:433-48.

Li YX, Pan YG, He FP, Yuan MQ, Li SB. Pathway analysis and metabolites identification by metabolomics of etiolation substrate from fresh-cut Chinese water chestnut (Eleocharis tuberosa). Molecules 2016;21:1648.

Wink M. Secondary Metabolites: Deterring Herbivores. Wiley Online Library: eLS; 2001.

Piasecka A, Jedrzejczak RN, Bednarek P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol 2015;206:948-64.

Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm 2015;9:293-304.

Liebelt DJ, Jordan JT, Doherty CJ. Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochem Rev 2019;18:1409-33.

Kurashov EA, Fedorova EV, Krylova JV, Mitrukova GG. Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR. Scientifica (Cairo) 2016;2016:1205680.

Kurashov EA, Mitrukova GG, Krylova JV. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a floodplain lake with a changeable trophic status. Contemp Probl Ecol 2018;11:179-94.

War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav 2012;7:1306-20.

Bartwal A, Mall R, Lohani P, Guru SK, Arora S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Reg 2013;32:216-32.

Jha Y. Endophytic bacteria-mediated regulation of secondary metabolites for the growth induction in Hyptis suaveolens under stress. In: Medically Important Plant Biomes: Source of Secondary Metabolites. Singapore: Springer; 2019. p. 277-92.

Sparman A. Preliminary outcomes of the use of an antioxidant dietary supplement for patients with or at risk of heart disease. Free Rad Antioxid 2017;7:152-5.

Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Altern Med 2015;2015:615384.

Emsen B, Dogan M. Evaluation of antioxidant activity of in vitro propagated medicinal Ceratophyllum demersum L. extracts. Acta Sci Pol Hortoru Cultus 2018;17:23-33.

Mannino AM, Vaglica V, Oddo E. Interspecific variation in total phenolic content in temperate brown algae. J Biol Res 2017;90:6578.

Březinová TD, Vymazal J. Phenolic compounds in wetland macrophytes. Sci Agric Bohem 2018;49:1-8.

Das B, Pal D, Haldar A. Pharmacognostical and physiochemical study of the aquatic weed Hydrilla verticillata (Lf) Royale known as nutrient power house. Int J Res Phar Sci 2015;5:1-6.

Goud JV, Suryam A, Charya MS. Biomolecular and phytochemical analyses of three aquatic angiosperms. Afr J Microbiol Res 2009;3:418-21.

Chaudhary H, Dhuna V, Singh J, Kamboj SS, Seshadri S. Evaluation of hydro-alcoholic extract of Eclipta alba for its anticancer potential: An in vitro study. J Ethnopharmacol 2011;136:363-7.

Abreu AC, McBain AJ, Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 2012;29:1007-21.

Subramanian U, Kishorekumar MS, Muthuraman S, Munusamy AP, Sundaram R. Marine algal secondary metabolites promising anti-angiogenesis factor against retinal neovascularization in CAM model. Res Rev A J Life Sci 2018;8:19-25.

Kumari V, Kaushal K, Sharma AK, Mishra RC, Soni P. Some phytochemicals found in medicinal plants used in cancer: A review. Med Chem (Los Angeles) 2018;8:423-5.

Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018;36:506-20.

Ashraf MA. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. BioMed Res Int 2020;2020:8602879.

Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 2006;104:322-7.

Nagulendran KR, Velavan S, Mahesh R, Begum VH. In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. J Chem 2007;4:440-9.

Shin DJ, Choe J, Hwang KE, Kim CJ, Jo C. Antioxidant effects of lotus (Nelumbo nucifera) root and leaf extracts and their application on pork patties as inhibitors of lipid oxidation, alone and in combination. Int J Food Prop 2019;22:383-94.

Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016;21:182.

Luan G, Lu X. Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 2018;36:430-42.

Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, et al. Chemo-and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Nat Prod Rep 2014;31:1585-611.

Chai TT, Ooh KF, Quah Y, Wong FC. Edible freshwater macrophytes: A source of anticancer and antioxidative natural products-a mini-review. Phytochem Rev 2015;14:443-57.

Gopal B, editor. Ecology and Management of Aquatic Vegetation in the Indian Subcontinent. Berlin, Germany: Springer Science and Business Media; 2016.

Hu H, Hong Y. Algal-bloom control by allelopathy of aquatic macrophytes-a review. Front Environ Sci Eng China 2008;2:421-38.

Sagehashi M, Kawazoe A, Fujii T, Hu HY, Sakoda A. Analysis of phosphorus behavior in the giant reed for phytoremediation and the biomass production system. J Water Environ Technol 2009;7:143-54.

Choudhary MI, Naheed N, Abbaskhan A, Musharraf SG, Siddiqui H. Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry 2008;69:1018-23.

Bertoli A, Ruffoni B, Pistelli L, Pistelli L. Analytical methods for the extraction and identification of secondary metabolite production in in vitro plant cell cultures. Adv Exp Med Biol 2010;698:250-66.

Padial AA, Bini LM, Thomaz SM. The study of aquatic macrophytes in neotropics: A scientometrical view of the main trends and gaps. Braz J Biol 2008;68:1051-9.

Sculthorpe CD. The Biology of Aquatic Vascular Plants. London: Konigstein; 1985.

Ananya AK, Ahmad IZ. Cyanobacteria the blue green algae and its novel applications: A brief review. Int J Innov Appl Stud 2014;7:251.

Leflaive JP, Ten-Hage LO. Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshw Biol 2007;52:199-214.

Bajpai VK. Antimicrobial bioactive compounds from marine algae: A mini review. Sciences 2016;45:1076-85.

Patel A, Mishra S, Ghosh PK. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Ind J Biochem Biophys 2006;43:25-31.

Zinicovscaia I, Cepoi L, editors. Cyanobacteria for Bioremediation of Wasteeaterd. Berlin: Springer; 2016. p. 124.

Das S. Microbial Biodegradation and Bioremediation. Amsterdam, Netherlands: Elsevier; 2014. p. 642.

Costa JA, Morais DM. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 2011;102:2-9.

Landsberg JH. The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 2002;10:113-390.

Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, et al. Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 2011;46:3810-9.

Nogle LM, Okino T, Gerwick WH. Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbyam ajuscula. J Nat Prod 2001;64:983-5.

Soria-Mercado IE, Pereira A, Cao Z, Murray TF, Gerwick WH. Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org Lett 2009;11:4704-7.

Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. Inhibition of human leukocyte elastase by brunsvicamides A-C: Cyanobacterial cyclic peptides. ChemMedChem 2009;4:1425-9.

Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria-a prolific source of natural products. Tetrahed 2001;57:9347-77.

Barzkar N, Jahromi ST, Poorsaheli HB, Vianello F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar Drugs 2019;17:464.

Ploutno A, Carmeli S. Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 2000;63:1524-6.

Miller MA, Byrne BA, Jang SS, Dodd EM, Dorfmeier E, Harris MD, et al. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff. Vet Res 2010;41:1-3.

Peltomaa E, Johnson MD, Taipale SJ. Marine cryptophytes are great sources of EPA and DHA. Mar Drugs 2018;16:3.

Lin HY, Lin HJ. Polyamines in microalgae: Something borrowed, something new. Mar Drugs 2019;17:1.

Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, et al. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2019;37:193-222.

Morais MG, Vaz BD, Morais ED. Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015;2015:835761.

Sathasivam R, Radhakrishnan R, Hashem A, Abd-Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019;26:709-22.

Orefice I, Gerecht A, D’Ippolito G, Fontana A, Ianora A, Romano G. Determination of lipid hydroperoxides in marine diatoms by the FOX2 Assay. Mar Drugs 2015;13:5767-83.

Silver MW, Bargu S, Coale SL, Benitez-Nelson CR, Garcia AC, Roberts KJ, et al. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific. Proc Natl Acad Sci 2010;107:20762-7.

Lefebvre KA, Robertson A. Domoic acid and human exposure risks: A review. Toxicon 2010;56:218-30.

Ferriss BE, Marcinek DJ, Ayres D, Borchert J, Lefebvre KA. Acute and chronic dietary exposure to domoic acid in recreational harvesters: A survey of shellfish consumption behavior. Environ Int 2017;101:70-9.

Trainer VL, Moore L, Bill BD, Adams NG, Harrington N, Borchert J, et al. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar Drugs 2013;11:1815-35.

Pulido OM. Domoic acid toxicologic pathology: A review. Mar Drugs 2008;6:180-219.

De La Iglesia P, Gago-Martinez A. Determination of yessotoxins and pectenotoxins in shellfish by capillary electrophoresis-electrospray ionization-mass spectrometry. Food Add Cont 2009;26:221-8.

Bajaj YP. Medicinal and Aromatic Plants IX. Springer: Springer- Verlag Berlin Heidelberg; 2012. p. 415.

Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE. Identification of euglenophycin-A toxin found in certain euglenoids. Toxicon 2010;55:100-4.

Hay ME. Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 2009;1:193.

Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 2006;44:1144-50.

Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A 2 s, lipoxygenases and cyclooxygenases. J Appl Phycol 2003;15:61-6.

Kuda T, Kunii T, Goto H, Suzuki T, Yano T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 2007;103:900-5.

Kumler WE. Evidence against a mechanism of allelopathy in the green alga Chlorodesmis fastigiata. PeerJ Prepr 2017;5:e2700.

Campbell JE, Craft JD, Muehllehner N, Langdon C, Paul VJ. Responses of calcifying algae (Halimeda spp.) to ocean acidification: Implications for herbivores. Mar Ecol Prog Ser 2014;514:43-56.

Fattahian M, Ghanadian M, Ali Z, Khan IA. Jatrophane and rearranged jatrophane-type diterpenes: Biogenesis, structure, isolation, biological activity and SARs (1984-2019). Phytochem Rev 2020;13:1.

Hao H, Fu M, Yan R, He B, Li M, Liu Q, et al. Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agriic Immunol 2019;30:937-54.

Taskin E, Ozturk M, Kurt O. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr J Biotechnol 2007;6:2746-51.

Fitton JH. Antiviral properties of marine algae. In: Critchley AT, Ohno M, Largo DB, editors. World Seaweed Resources: Windows and Macintosh. Wokingham, UK: ETI Information Services; 2006. p. 1-7.

Wenli Y, Yaping Z, Bo S. The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chem 2004;86:525-9.

Kamenarska Z, Dimitrova-Konaklieva S, Stefanov K, Najdenski H, Tzvetkova I, Popov S. Comparative study of the volatile compounds from some Black Sea brown algae. Bot Mar 2002;45:502-9.

Kristinsson HG. Antioxidants and Functional Components in Aquatic Foods. Hoboken, New Jersey: John Wiley and Sons; 2014. p. 376.

Koivikko R, Loponen J, Pihlaja K, Jormalainen V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 2007;18:326

Kim SK, editor. Marine Pharmacognosy: Trends and Applications. Boca Raton: CRC Press; 2012. p. 454.

Hellwig V, Gasser J. Polyphenols from waste streams of food industry: Valorisation of blanch water from marzipan production. Phytochem Rev 2020;22:1-8.

Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 2011;22:315-26.

Li S, Wang P, Yuan W, Su Z, Bullard SH. Endocidal regulation of secondary metabolites in the producing organisms. Sci Rep 2016;6:1-17.

Li H, Cooke TJ, Korotkov A, Chapman CW, Eastman A, Wu J. Stereoselective synthesis and biological evaluation of C1-epimeric and desmethyl monomeric nuphar analogues. J Org Chem 2017;82:2648-55.

Jormalainen V, Honkanen T. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J Evol Biol 2004;17:807-20.

Hemat RA. Fat and muscle dysfunction. In: Hemat RA, editor. Andropathy Dublin. Ireland: Urotext; 2007. p. 83-85.

Maruyama H, Yamamoto I. An Antitumor Fucoidan Fraction from Edible Brown Seaweed, Laminaria religiosa. In: 11th International Seaweed Symposium. Dordrecht: Springer; 1984. p. 534-6.

Van Weelden G, Bobiński M, Okła K, Van Weelden WJ, Romano A, Pijnenborg J. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs 2019;17:32.

Aydogmuş Z, Imre S, Ersoy L, Wray V. Halogenated secondary metabolites from Laurencia obtusa. Nat Prod Res 2004;18:43-9.

Ishii T, Miyagi M, Shinjo Y, Minamida Y, Matsuura H, Abe T, et al. Two new brominated C15-acetogenins from the red alga Laurencia japonensis. Nat Prod Res 2019;26:1-7.

Popplewell WL. Isolation and Structure Elucidation of New Secondary Metabolites from New Zealand Marine Red Algae, Thesis; 2008.

Ronson TO. Development of Cross-coupling Routes to Macrocyclic Polyenes: The First Total Synthesis of Phacelocarpus 2-pyrone New York: A Doctoral Dissertation, University of New York; 2015.

Chandra S, Chandra D, Barh A, Pandey RK, Sharma IP. Bryophytes: Hoard of remedies, an ethno-medicinal review. J Tradit Complement Med 2017;7:94-8.

Dey A, Mukherjee A. Therapeutic potential of bryophytes and derived compounds against cancer. J Acute Dis 2015;4:236-48.

Tosun A, Süntar İ, Keleş H, Hö K, Asakawa Y, Akkol EK. Wound healing potential of selected liverworts. Turk J Pharm Sci 2016;13:285-91.

Vierengel A, Kohn G, Vandekerkhove O, Hartmann E. 9-Octadecen-6- ynoic acid from Riccia fluitans. Phytochemistry 1987;26:2101-2.

Mellegard H, Stalheim T, Hormazabal V, Granum PE, Hardy SP. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria. Let Appl Microbiol 2009;49:85-90.

Zaitseva NZ. A Polysaccharide Extracted from Sphagnum Moss as Antifungal Agent in Archaeological Conservation. Vol. 49. International Master Abstract; 2010.

Klavina L. Composition of Mosses, their Metabolites and Environmental Stress Impacts. PhD Thesis. Riga: University of Latvia; 2018.

Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem 2007;79:557-80.

Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 1995;38:35-39.

Broudiscou LP, Lassalas B. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reprod Nutr Dev 2000;40:431-40.

Talukdar AD, Tarafdar RG, Choudhury MD, Nath D, Choudhury S. A review on pteridophyte antioxidants and their potential role in discovery of new drugs. Assam Uni J Sci Technol 2011;7:151-5.

Mithraja MJ, Marimuthu J, Mahesh M, Paul ZM, Jeeva S. Phytochemical studies on Azolla pinnata R. Br., Marsilea minuta L. and Salvinia molesta Mitch. Asian Pac J Trop Biomed 2011;1:526-9.

De Britto AJ, Gracelin DH, Kumar PB. Qualitative and quantitative analysis of phytochemicals in Marsilea Minuta (Linn). Int J Pharm Biol Sci 2013;4:800-5.

Selvi KV, Aruna S, Rajeshkumar S. Analysis of bioactive metabolites from Azolla pinnata against dental caries. Res J Pharm Technol 2017;10:1891-6.

Kumar R. Allelopathic Studies of Phragmites karka and Arundo donax. PhD Thesis. Jaipur: University of Rajasthan; 2009.

Xavier GS, Selvaraj P, John N. Impact of phytoecdysone fractions of the ferns Cyclosorous interruptus, Christella dentata and Nephrolepis cordifolia on the biology of Spodoptera litura (Fab.). J Biopest 2016;9:125.

Van der Burg WJ. Ceratopteris thalictroides (L.) Brongn. Record from PROTA4U. Wageningen: PROTA (Plant Resources of Tropical Africa/ Resources végétales de l’Afrique tropicale); 2004.

Kozlowski G, Stoffel M, Bétrisey S, Cardinaux L, Mota M. Hydrophobia of gymnosperms: Myth or reality? A global analysis. Ecohydrol 2015;8:105-12.

Tulika T, Mala A. Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. J Plant Sci 2015;3:10-8.

Ayyad SN. A new cytotoxic stigmastane steroid from Pistia stratiotes. Pharmazie 2002;57:212-4.

Dethe UL, Joshi SS, Desai SS, Aparadh VT. Screening of bioactive compounds of Sesbania grandiflora and Pistia stratiotes. Indian J Adv Plant Res 2014;1:27-30.

Tyagi T. Phytochemical screening of active metabolites present in Eichhornia Crassipes (Mart.) Solms and Pistia Stratiotes (L.): Role in ethanomedicine. Asian J Pharm Educ Res 2017;6:40-56.

Abraham J, Chakraborty P, Chacko AM, Khare K. Cytotoxicity and antimicrobial effects of Pistia stratiotes leaves. Int J Drug Dev Res 2014;6:208-211.

Lotha RO, Sivasubramanian AR. Flavonoids nutraceuticals in prevention and treatment of cancer: A review. Asian J Pharm Clin Res 2018;11:42-7.

Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, et al. Flavonoids in cancer and apoptosis. Cancers 2019;11:28.

Tripathi P, Kumar R, Sharma AK, Mishra A, Gupta R. Pistia stratiotes (Jalkumbhi). Pharmacogn Rev 2010;4:153.

Khan MA, Marwat KB, Gul B, Wahid F, Khan H, Hashim S. Pistia stratiotes L. (Araceae): Phytochemistry, use in medicines, phytoremediation, biogas and management options. Pak J Bot 2014;46:851-60.

Wu X, Wu H, Chen J, Ye J. Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environ Sci Poll Res 2013;20:8192-201.

Aliotta G, Monaco P, Pinto G, Pollio A, Previtera L. Potential allelochemicals from Pistia stratiotes L. J Chem Ecol 1991;17:2223-34.

Mulderij G, Mau B, van Donk E, Gross EM. Allelopathic activity of Stratiotes aloides on phytoplankton-towards identification of allelopathic substances. In: Shallow Lakes in a Changing World. Dordrecht: Springer; 2007. p. 89-100.

Jimenez Fonseca AL. Proceso de Producción de Bioetanol, a Partir de la Biomasa Hidrolizada de la Eichhornia Crassipes con la Levadura (Saccharomyces Cerevisiae); 2019.

Sandhar HK, Kumar B, Prasher S, Tiwari P, Salhan M, Sharma P. A review of phytochemistry and pharmacology of flavonoids. Int Pharm Sci 2011;1:25-41.

Nessa A, Sojib SH, Rahman S. Assessment of habitat types and floral species in Tangail, Bangladesh and displayed on to a map using GIS. Bangladesh J Sci Res 2015;28:73-8.

Coetzee JA, Hill MP, Ruiz-Téllez T, Starfinger U, Brunel S. Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Bot Lett 2017;164:303-26.

Lalitha P, Sripathi SK, Jayanthi P. Secondary metabolites of Eichhornia crassipes (waterhyacinth): A review (1949 to 2011). Nat Prod Commun 2012;7:1249-56.

Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 2011;3:228-49.

Yoo KY, Park SY. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012;17:3524-38.

Padgett DJ. A monograph of nuphar (nymphaeaceae) 1. Rhodora 2007;109:1-95.

Jang DS, Su BN, Pawlus AD, Jones WP, Kleps RA, Bunyapraphatsara N, et al. Limnophilaspiroketone, a highly oxygenated phenolic derivative from Limnophila geoffrayi. J Nat Prod 2005;68:1134-6.

Ozer J, Fishman D, Eilam B, Golan-Goldhirsh A, Gopas J. Anti-metastatic effect of semi-purified Nuphar lutea leaf extracts. J Cancer 2017;8:1433-40.

Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J Pharm Pharmacol 2009;61:407-22.

Pereira DA, Koelzer J, Dalmarco JB, Pizzolatti MG, Fröde TS. Evaluation of the antiinflammatory efficacy of Lotus pedunculatus. Int J Green Pharm 2009;3:105-11.

Gupta J, Saxena MK. Allelopathic potential of Nymphaea stellata Wild. Nat Environ Pollut Technol 2002;1:435-8.

Selvakumari S, Arcot S. Andiabetic activity of Nymphaea pubescens Willd-a plant drug of aquatic flora interest. J Pharm Res 2010;3:3067-9.

Prasad KS, Savithramma N. Screening of phytochemical constituents of Nymphaea caerulea Savigny. An aquatic plant resource for drug development. Am J Adv Drug Deliv 2016;4:45-54.

Marquina S, Bonilla-Barbosa J, Alvarez L. Comparative phytochemical analysis of four Mexican Nymphaea species. Phytochemistry 2005;66:921-7.

Nakai S, Inoue Y, Hosomi M, Murakami A. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res 2000;34:3026-32.

Leu E, Krieger-Liszkay A, Goussias C, Gross EM. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 2002;130:2011-8.

Pollio A, Pinto G, Ligrone R, Aliotta G. Effects of the potential allelochemical α-asarone on growth, physiology and ultrastructure of two unicellular green algae. J Appl Phycol 1993;5:395-403.

Hutchinson GE. A Treatise on Limnology: Limnological Botany. Hoboken, New Jersey: John Wiley and Sons; 1975.

Wu MJ, Wang L, Weng CY, Yen JH. Antioxidant activity of methanol extract of the lotus leaf (Nelumbo nucifera Gertn.). Am J Chin Med 2003;31:687-98.

Lu P, Aaron TH, Armen Z. Toward the synthesis of Nuphar sesquiterpene thioalkaloids: Stereo divergent rhodium-catalyzed synthesis of the thiolane subunit. J Org Chem 2015;80:7581-9.

Simon L. Studies Towards the Total Synthesis of Limnophilaspiroketone and the Synthesis of Alpha-modified Enones of Natural Product Derived Model Compound Limno-CP. PhD thesis; 2012.

Reddy NP, Reddy BA, Gunasekar D, Blond A, Bodo B, Murthy MM. Flavonoids from Limnophila indica. Phytochemistry 2007;68:636-9.

Saxena MK Morphological markers to identify Ceratophyllum demersum N. and C. muricatum Cham. Ind J Ecol 2017a;44:612-7.

Karale S, Awati S, Chougule N. Pharmacological Activities of Ceratophyllum demersum Linn. Riga: LAP Lambert Academic Publishing; 2011. p. 84.

Zhu X, Dao G, Tao Y, Zhan X, Hu H. A review on control of harmful algal blooms by plant-derived allelochemicals. J Hazard Mater 2020;401:123403.

Ghosh T, Maity TK, Pinaki S, Kumar DD, Bose A. Antidiabetic and in vivo antioxidant activity of ethanolic extract of Bacopa monnieri Linn. aerial parts: A possible mechanism of action. Iran J Pharm Sci 2008;62:61-8.

Bankova V, Ivanova P, Christov R, Popov S. Secondary metabolites of Ceratophyllum demersum. Hydrobiologia 1995;316:59-61.

Kensa VM, Neelamegum R. GC-MS Determination of bioactive constituents of Hydrilla verticillata (Lf) Royle. Collected from unpolluted and polluted water sources. Asian J Biol 2016;1:1-6.

Xiao Y, Wang YL, Gao SX, Sun C, Zhou ZY. Chemical composition of Hydrilla verticillata (L. f.) royle in Taihu Lake. Chin J Chem 2007;25:661-5.

Saxena MK Allelopathic effect of Hydrilla verticillata on the growth of Salvinia molesta. Ind J Ecol 2017b;44:660-2.

Parker JD, Collins DO, Kubanek J. Chemical defense promotes persistence of the aquatic plant Micranthemum umbrosum. J Chem Ecol 2006;32:815-33.

Aliotta G, Molinaro A, Monaco P, Pinto G, Previtera L. Three biologically active phenylpropanoid glucosides from Myriophyllum verticillatum. Phytochemistry 1992;31:109-11.

DellaGreca M, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Antialgal ent-labdane diterpenes from Ruppia maritima. Phytochemistry 2000;55:909-13.

Mues R. Species specific flavone glucuronides in Elodea species. Biochem System Ecol 1983;11:261-5.

DellaGreca M, Fiorentino A, Isidori M. Antialgal ent-labdane diterpenes from Ruppia maritima. Phytochemistry 2000;55:909-13.

Wang W, Ji M, Wang M, Zhang N, Tang Y, Zhang Z. Allelopathy of Ruppia maritima on Chlorella vulgaris in reclaimed wastewater. J Lake Sci 2007;19:321-5.

Wang HR, Sui HC, Zhu BT. Ellagic acid, a plant phenolic compound, activates cyclooxygenase-mediated prostaglandin production. Exp Ther Med 2019;18:987-96.

Lupoae P, Cristea V, Borda D, Lupoae M, Gurau G, Dinica RM. Phytochemical screening: Antioxidant and antibacterial properties of Potamogeton species in order to obtain valuable feed additives. J Oleo Sci 2015;64:1111-23.

Haroon AM. Effect of some macrophytes extracts on growth of Aspergillus parasiticus. Egypt J Aquat Res 2006;32:301-13.

Kittakoop P, Wanasith S, Watts P. Potent antiviral potamogetonyde and potamogetonol, new furanoid labdane diterpenes from Potamogeton malaianus. J Nat Prod 2001;64:385-8.

Erhard D, Gross E. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat Bot 2006;85:203-11.

Erhard D, Pohnert G, Gross EM. Chemical defense in Elodea nuttalii reduces feeding and growth of aquatic herbivorous Lepidoptera. J Chem Ecol 2007;33:1573-61.

Gao YN, Liu BY, Xu D. Phenolic compounds exuded from two submerged freshwater macrophytes and their allelopathic effects on Microcystic aeruginosa. Pol J Environ Stud 2011;20:1153-9.

Prabha P, Rajkumar J. Phytochemical screening and bioactive potential of Hydrilla verticillata. J Chem Pharm Res 2015;7:1809-15.

Bhavsar PV, Panchal HA, Maheshwari O. Potential review of Hydrilla. J Pharm Sci Biosci Res 2016;6:436-41.

Fasya G, Amalia S, Megawati DS. Isolation, Identification, and Bioactivity of Steroids Isolates from Hydrilla verticillata Petroleum Ether Fraction A. Vol. 456. IOP Conference Series Earth and Environmental Science 2020. p. 12009.

Gupta J, Saxena MK. Allelopathic effect of dried leaves of Lantana camara L. In: Tripathi RD, Kulshreshtha K, Agrawal M, Agrawal SB, editors. Plant Response to Environmental Stress. Lucknow: International Book Distributing Co.; 2006. p. 95-102.

Zhalolov I, Khuzhaev VU, Levkovich MG, Aripova SF. Alkaloids of Arundo donax. VIII. 3-alkylindole derivatives in A. donax. Chem Nat Compd 2000;36:528-30.

Miles DH, Tunsuwan K, Chittawong V, Hedin PA, Kokpol U, Ni CZ, et al. Agrochemical activity and isolation of N-(4’-bromophenyl)-2, 2-diphenylacetanilide from the Thai plant Arundo donax. J Nat Prod 1993;56:1590-3.

Monograph Bacopa monnieri. Altern Med Rev 2004;9:79-85.

Siebert TE, Wood C, Elsey GM, Pollnitz AP. Determination of rotundone, the pepper aroma impact compound, in grapes and wine. J Agric Food Chem 2008;56:3745-8.

Halliwel RF, Davey PG, Lambert JJ. A patch clamp study of the effects of ciprofloxacin and biphenyl acetic acid on rat hippocampal neurone GABAA and lonotropic glutamate receptors. Neuropharmacology 1995;34:1615-24.

Zhang M, Chen Y. Chemical constituent of Eclipta alba (L.) Hassk. Zhongguo Zhong Yao Za Zhi 1996;21:480-1.

Mithun NM, Shashidhara S, Kumar VR. Eclipta alba (L,) A review on its phytochemical and pharmacological profile. PharmacologyOnLine 2011;1:345-57.

Van Aller RT, Pessoney GF, Rogers VA, Watkins EJ, Leggett HG. Oxygenated fatty acids: A class of allelochemicals from aquatic plants. Washington, DC: American Chemical Society; 1985.

Greca MD, Fiorention A, Monaco P, Previtera L. Cycloartane triterpenes from Juncus effusus. Phytochemistry 1994;35:1017-22.

Corsaro MM, Dellagreca M, Fiorentino A, Monaco P, Previtera L. Cycloartane glucosides from Juncus effusus. Phytochemistry 1994;37:1017-22.

Dong-Zhe J, Chiou GC, Iinuma M, Tanaka T. Two p-coumaroyl glycerides from Juncus effusus. Phytochemistry 1996;41:545-7.

Chun YM, Choi YD. Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into Typha spp.(cattail) wetlands in Northwestern Indiana, USA. J Plant Biol 2009;52:220-8.

Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Biores Technol 2014;174:176-81.

Jain SK, Sinha BK, Gupta RC. Notable Plants in Ethnomedicine of India. Lucknow, New Delhi: National Botanical Research Institute, Deep Publications; 1991. p. 219.

Datta SC. Allelopathic potential of Polygonum orientale L. in relation to germination and seedling growth of weeds. Flora 1992;169:456-65.

D’abrosca B, Dellagreca M, Fiorentino A, Isidori M, Monaco P, Pacifico S. Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. J Chem Ecol 2006;32:81-96.

Varghese A, Gavani U, Abraham S. Phytochemical screening and antimicrobial investigation of Typha angustifolia Linn. Int J Chem Sci 2009;7:1905-10.

Krishna AN, Raman V, Babu KR. Antioxidant activity and GC-MS analysis of Phragmites vallatoria leaf ethanol extract. Int Res J Pharm 2012;3:252-4.

Chicalote-Castillo D, Ramírez-García P, Macías-Rubalcava ML. Allelopathic effects among selected species of phytoplankton and macrophytes. J Environ Biol 2017;38:1221-7.

Wöhler-Geske A, Moschner CR, Gellerich A, Militz H, Greef JM, Hartung E. Provenances and properties of thatching reed (Phragmites australis). Landbauforschung Ger 2016;66:1-0.

Derouiche SA, Azzi MA, Hamida AB. Effect of extracts aqueous of phragmites australis on carbohydrate metabolism, some enzyme activities and pancreatic islet tissue in alloxaninduced diabetic rats. Int J Pharm Pharm Sci 2017;9:54-8.

Li FM, Hu HY. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 2005;71:6545-53.

Vamsikrishna AN, Ramgopal M, Raman BV, Balaji M. Anti diabetic efficacy of ethanolic extract of Phragmites vallatoria on stz-induced diabetic rats. Int J Pharm Sci 2012;4:118-20.

Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. Int J Food Prop 2017;20:1197-238.

Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Target 2008;8:634-46.

Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer 2018;10:89-100.

Zhu L, Zhang D, Yuan C, Ding X, Shang Y, Jiang Y, et al. Anti- Inflammatory and antiviral effects of water-soluble crude extract from Phragmites australis in vitro. Pak J Pharm Sci 2017;30:1357-62.

Elsharkawy ER. Allelopathic effects of alkaloid contents of Hyoscyamus muticus and Withania somnifera on the germination of Cichorium intybus Seeds. Biosci Biotechnol Res Commun 2019;12:953-60.

Ervin GN, Wetzel RG. Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). Am J Bot 2000;87:853-60.

Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 2000;45:862-70.

Inderjit, Malik AU. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Berlin, Germany: Springer Verlag; 2003. p. 272.

Behery FA, Naeem ZE, Maatooq GT, Amer MM, Ahmed AF. A novel antioxidant phenanthrenoid dimer from Juncus acutus L. Nat Prod Res 2013;27:155-63.

DellaGreca M, Fiorentino A, Isidori M, Lavorgna M, Monaco P, Previtera L, et al. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry 2002;60:633-8.

Yang GZ, Li HX, Song FJ, Chen Y. Diterpenoid and phenolic compounds from Juncus effusus L. Helv Chim Acta 2007;90:1289-95.

Awaad AS. Phenolic glycosides of Juncus acutus and its anti-eczematic activity. Chem Nat Compd 2006;42:152-5.

Rodrigues MJ, Gangadhar KN, Zengin G, Mollica A, Varela J, Barreira L, et al. Juncaceae species as sources of innovative bioactive compounds for the food industry: In vitro antioxidant activity, neuroprotective properties and in silico studies. Food Chem Toxicol 2017;107:590-6.

Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 2017;9:plx009.

Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C, Wubshet SG, Nyberg NT, Barreira L, et al. Maritime halophyte species from Southern Portugal as sources of bioactive molecules. Mar Drugs 2014;12:2228-44.

Shode, FO, Mahomed, AS, Rogers CB. Typhaphthalide and typharin, two phenolic compounds from Typha capensis. Phytochemistry 2002;61:955-7.

Fruet AC, Seito LN, Rall VL, Di Stasi LC. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L.) prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis. BMC Complement Altern Med 2012;12:62.

Tao WW, Yang NY, Liu L, Duan JA, Wu DK, Qian DW, et al. Two new cerebrosides from the pollen of Typha angustifolia. Fitoterapia 2010;81:196-9.

Umesh TG. In-vitro antioxidant potential, free radical scavenging and cytotoxic activity of Simarouba gluaca leaves. Int J Pharm Sci 2015;7:411-6.

Qin F, Sun HX. Immunosuppressive activity of pollen typhae ethanol extract on the immune responses in mice. J Ethnopharmaco 2005;102:424-9.

Londonkar RL, Kattegouga UM, Shivsharanappa K, Hanchinalmath JV. Phytochemical screening and in vitro antimicrobial activity of Typha angustifolia Linn leaves extract against pathogenic gram negative micro organisms. J Pharm Res 2013;6:280-3.

Gurunathan S. Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Eng Chem 2015;29:217-26.

Abo-Altemen RA, Al-Shammari AM, Shawkat MS. GC-MS analysis and chemical composition identification of Cyperus rotundus L. from Iraq. Energy Proc 2019;157:1462-74.

Al-Hilli Z, Al-Jumaily E, Yaseen N. Role of volatile oils fraction of Cyperus rotundus L. in induction of apoptosis on cancer cell lines in vitro. Iraqi J Biotech 2010;9:286-98.

Al-Saeedi AT. Total Oligomeric Flavonoids (ROF) of the Herb Tubers Cyperus rotundus Induce Growth Inhibition and Apoptosis in Some Cancer Cell Lines, a Preliminary Study. In: Proceedings of the AACR-NCIEORTC International Conference: Molecular Targets and Cancer Therapeutics: 2003 Oct 19-23. Boston, MA Philadelphia, PA: AACR Abstract No. A176; 2003.

Jeyasheela R, Padmalatha C, Chairman K. Phytochemical analysis of Cyperus rotundus and its effect on ethanol treatedrats. Elixir Bio Tech 2011;37:4137-40.

Singh N, Pandey BR, Verma P. Phyto-pharmacotherapeutics of Cyperus rotundus Linn. (Motha): An overview. Indian J Natl Prod Res 2012;3:467-76.

Kamala A, Middha SK, Gopinath C, Sindhura HS, Karigar CS. In vitro antioxidant potentials of Cyperus rotundus L. rhizome extracts and their phytochemical analysis. Pharmacogn Mag 2018;14:261.

Simorangkir D, Masfria M, Harahap U, Satria D. Activity anticancer n-hexane fraction of Cyperus Rotundus l. rhizome to breast cancer MCF-7 cell line. Open Access Maced J Med Sci 2019;7:3904.

Wang F, Song X, Ma S, Liu C, Sun X, Wang X, et al. The treatment role of Cyperus rotundus L. to triple-negative breast cancer cells. Biosci Rep 2019;39:20190502.

Luo Y, Li X, He J, Su J, Peng L, Wu X, et al. Isolation, characterisation, and antioxidant activities of flavonoids from chufa (Eleocharis tuberosa) peels. Food Chem 2014;164:30-5.

Nahak P, Gajbhiye RL, Karmakar G, Guha P, Roy B, Besra SE, et al. Orcinol glucoside loaded polymer-lipid hybrid nanostructured lipid carriers: Potential cytotoxic agents against gastric, colon and hepatoma carcinoma cell lines. Pharm Res 2018;35:198.

Manvar D, Mishra M, Kumar S, Pandey VN. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol 2012;144:545-54.

Malini S, Eganathan P. GC-MS analysis of chemical composition of in vivo plant, in vitro and elicited roots of Bacopa monnieri (L.) Pennell. Anal Chem Lett 2013;3:380-8.

Cetrulo GL, Hay ME. Activated chemical defenses in tropical versus temperate seaweeds. Mar Ecol Prog Ser 2000;207:243-53.

Bolser RC, Hay ME, Lindquist N, Fenical W, Wilson D. Chemical defenses of freshwater macrophytes against crayfish herbivory. J Chem Ecol 1998;24:1639-58.

Thalang NA, Trakoontivakorn G, Nakahara K. Determination of Antioxidant Activity of Some Commonly Consumed Leafy Vegetables in Thailand. Japan: Japan International Research Center for Agricultural Sciences J Scientific Papers; 2001.

Lee SY, Abas F, Khatib A, Ismail IS, Shaari K, Zawawi N. Metabolite profiling of Neptunia oleracea and correlation with antioxidant and α-glucosidase inhibitory activities using 1H NMR-based metabolomics. Phytochem Lett 2016;16:23-33.

Whittaker RH. New concepts of kingdoms of organisms. Science 1969;163:150-60.

Howard BM, Nonomura AM, Fenical W. Chemotaxonomy in marine algae: Secondary metabolite synthesis by Laurencia in unialgal culture. Biochem System Ecol 1980;8:329-36.

Paul VJ, Fenical W. Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta. In: Bioorganic Marine Chemistry. Berlin, Heidelberg: Springer; 1987. p. 1-29.

Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K. Chemical defense in the seaweed Ochtodes secundiramea (Montagne) Howe (Rhodophyta): Effects of its monoterpenoid components upon diverse coral-reef herbivores. J Exp Mar Biol Ecol 1988;114:249-60.

Bakus GJ, Targett NM, Schulte B. Chemical ecology of marine organisms: An overview. J Chem Ecol 1986;12:951-87.

Paul VJ, Van Alstyne KL. Activation of chemical defenses in the tropical green algae Halimeda spp. J Exp Mar Biol Ecol 1992;160:191-203.

Swain T, Copper GD. Biochemical evolution in early land plants. In: Niklas KJ, editor. Paleobotany, Paleoecology and Evolution. Vol. 1. New York: Praeger; 1981. p. 103-34.

Larson RA, Berenbaum MR. Environmental phototoxicity. Environ Sci Tech 1988;22:354-60.

Rodrigues MJ, Vizetto-Duarte C, Gangadhar KN, Zengin G, Mollica A, Varela J, et al. In vitro and in silico approaches to unveil the mechanisms underlying the cytotoxic effect of juncunol on human hepatocarcinoma cells. Pharmacol Rep 2018;70:896-9.

Rozema J, Björn LO, Bornman JF, Gaberščik A, Häder DP, Trošt T, et al. The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B Biol 2002;66:2-12.

Stafford HA. Flavonoid evolution: An enzymic approach. Plant Physiol 1996;96:680-5.

Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, et al. Origin of land plants: Do conjugating green algae hold the key? BMC Evol Biol 2011;11:1-10.

Sculthorpe CD. Biology of Aquatic Vascular Plants. London: Edward Arnold; 1967.

Cutler HG, Cutler SJ, editors. Biologically Active Natural Products: Agrochemicals. Boca Raton: CRC Press; 1999.

Muller CH. The Role of Allelopathy in the Evolution of Vegetation. In: Chambers KL, editor. Biochemical Coevolution. Proceedings of the 29th Annual Biology Colloquitlm. Corvallis, Oregon: Oregon State University Press; 1970. p. 13-32.

Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B Biol Sci 2015;370:20140330.

Cook CD. Aquatic Plant Book. 2nd ed. Amsterdam, New York: SPB Academic Publishing; 1996. p. 228.

Published

07-01-2021

How to Cite

M K, S., S. NEERJA, K. S, D. MP, and D. S. “REVIEW POTENT PHARMACEUTICAL PRODUCTS FROM AQUATIC PLANTS – REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 1, Jan. 2021, pp. 48-63, doi:10.22159/ajpcr.2021.v14i1.39992.

Issue

Section

Review Article(s)