GENOTOXIC AND ANTIGENOTOXIC POTENTIAL OF THE LAGENANDRA TOXICARIA DALZ. RHIZOME METHANOL EXTRACT USING ALLIUM CEPA ASSAY

Authors

  • AKARSHA B Department of Applied Botany, Mangalore University, Mangaluru, Karnataka, India.
  • KRISHNAKUMAR G Department of Applied Botany, Mangalore University, Mangaluru, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2021.v14i5.41174

Keywords:

Lagenandra toxicaria, Allium cepa assay, Genotoxicity, Antigenotoxicity, DNA integrity

Abstract

Objective: The study is to evaluate the possible genotoxic and antigenotoxic potential of Lagenandra toxicaria rhizome methanol extract using Allium cepa root tip assay.

Methods: The rhizome methanol extract was prepared using Soxhlet apparatus. The A. cepa roots were treated with various concentrations of the extract at different time points and stained with aceto-orcein. The mitotic index (MI) was calculated.

Results: A significant decrease in MI and increase in the percentage of clastogenicity was observed in a time- and dose-dependent manner in the roots treated with the extract at 0.2 mg/ml, 0.5 mg/ml, 1 mg/ml, 5 mg/ml, and 10 mg/ml concentration for 1, 2, and 4 h. The field emission scanning electron microscopy and Fourier-transform infrared spectroscopy revealed evident morphological and biochemical changes at 10 mg/ml treatment when compared to control for 4 h. The agarose gel electrophoresis showed loss of DNA integrity at 10 mg/ml extract for 4 h. In situ histochemical staining by Schiff’s reagent and nitroblue tetrazolium confirmed the increased lipid peroxidation and free radical generation at 4 h treatment. Subsequently, the possible antigenotoxic potential of the plant extract was explored using H2O2 standard assays. The increased percentage of H2O2 induced nuclear lesions was reduced significantly after the modulatory treatment with extract.

Conclusion: The L. toxicaria rhizome methanol extract acts as an antigenotoxic agent at lower doses and at higher doses the extract induces clastogenic effects. Further studies are needed to unravel the active component in the extract that mediates the observed phenomenon in the current study.

Downloads

Download data is not yet available.

Author Biography

AKARSHA B, Department of Applied Botany, Mangalore University, Mangaluru, Karnataka, India.

RESEARCH SCHOLAR

DEPARTMENT OF APPLIED BOTANY 

MANGALORE UNIVERSITY

References

Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014;8:73-80.

Selvakumari PA. Pharmacognostical standardisation of Lagenandra toxicaria Dalz. Malaysian J Sci 2014;33:163-75.

Van ED, Goossens K, Smeets K, Van FL, Verhaert P, Peumans WJ. The major tuber storage protein of Araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol 1995;107:1147-58.

De Mejia EG, Prisecaru VI. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit Rev Food Sci Nutr 2005;45:425-45.

Kurdekar RR, Hegde GR, Hegde G, Hebbar SS. Antimicrobial screening of medicinal plants against human pathogens- A comparative account of two different methods of extraction. Int J Drug Dev Res 2012;4:82-9.

Sivarajan VV, Balachandran I. Ayurvedic Drugs and their Plant Sources. New Delhi: Oxford and IBH Publishing Company Private Ltd.; 1994. p. 374-6.

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, et al. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 2018;71:191-209.

Fiskesjö G. The Allium test--an alternative in environmental studies: The relative toxicity of metal ions. Mutat Res 1998;197:243-60.

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239-47.

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010;49:1603-16.

Devi HP, Mazumder PB. Methanolic extract of Curcuma caesia Roxb. prevents the toxicity caused by cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacogn Res 2016;8:43-9.

Prajitha V, Thoppil JE. Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. S Afr J Bot 2016;102:18-25.

Shetty A, Venkatesh T, Suresh PS, Tsutsumi R. Exploration of acute genotoxic effects and antigenotoxic potential of gambogic acid using Allium cepa assay. Plant Physiol Biochem 2017;118:643-52.

Rani G, Kaur K, Wadhwa R, Kaul SC, Nagpal A. Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food Chem Toxicol 2005;43:95-8.

Yuet Ping K, Darah I, Yusuf UK, Yeng C, Sasidharan S. Genotoxicity of Euphorbia hirta: An Allium cepa assay. Molecules 2012;17:7782-91.

Ghosh I, Mukherjee A, Mukherjee A. In planta genotoxicity of nZVI: Influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 2017;32:371-87.

Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 2010;81:1253-62.

Qin R, Wang C, Chen D, Björn LO, Li S. Copper-induced root growth inhibition of Allium cepa var. Agrogarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 2015;34:1045-55.

Khanal S, Shakya N, Thapa K, Pant DR. Phytochemical investigation of crude methanol extracts of different species of Swertia from Nepal. BMC Res Notes 2015;8:821.

Figueirôa ED, Nascimento da Silva LC, de Melo CM, Neves JK, da Silva NH, PereiraVR, et al. Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora L. and Eugenia malaccensis L.: Correlation with polyphenol and flavanoid content. ScientificWorldJournal 2013;2013:125027.

Chandel S, Kaur S, Singh HP, Batish DR, Kohli RK. Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J Microsc Ultrastruct 2017;5:225-9.

Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, et al. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology 2012;6:241-8.

Mangalampalli B, Dumala N, Grover P, Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J Environ Sci 2018;66:125-37.

Soltys D, Rudzińska-Langwald A, Kurek W, Gniazdowska A, Sliwinska E, Bogatek R. Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 2011;234:609-21.

Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, et al. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 2015;22:11057-66.

Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, et al. Mitochondrial and chromosomal damage induced by oxidative stress in Zn 2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 2017;7:1-14.

Shahid M, Ahmed B, Zaidi A, Khan MS. Toxicity of fungicides to Pisum sativum: A study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Adv 2018;8:38483-98.

Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 2009;407:5243-6.

Leme DM, Marin-Morales MA. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water--a case study. Mutat Res 2008;650:80-6.

Silveira GL, Lima MG, Reis GB, Palmieri MJ, Andrade-Vieria LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 2017;178:359-67.

Rosculete CA, Bonciu E, Rosculete E, Olaru LA. Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa. Int J Environ Res Public Health 2018;16:75.

Özkara A, Akyıl D, Eren Y, Erdoğmuş SF. Potential cytotoxic effect of Anilofos by using Allium cepa assay. Cytotechnology 2015;67:783-91.

Sharma S, Sharma S, Vig AP. Antigenotoxic potential of plant leaf extracts of Parkinsonia aculeata L. using Allium cepa assay. Plant Physiol Biochem 2018;130:314-23.

Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, et al. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC Plant Biol 2014;14:264.

Joubert E, Winterton P, Britz TJ, Gelderblom WC. Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). J Agric Food Chem 2005;53:10260-7.

Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 2004;57:453-5.

Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 2010;32:979-86.

Wu L, Yi H, Yi M. Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays. J Hazard Mater 2009;176:952-6.

Azqueta A, Collins A. Polyphenols and DNA damage: A mixed blessing. Nutrients 2016;8:785.

Kaur G, Singh HP, Batish DR, Kohli RK. Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology 2014;23:1292-304.

Cao J, Jiang LP, Liu Y, Yang G, Yao XF, Zhong LF. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells. Toxicon 2007;49:1219-22.

Choi EJ, Chee KM, Lee BH. Anti- and prooxidant effects of chronic quercetin administration in rats. Eur J Pharmacol 2003;482:281-5.

Mateus PG, Wolf VG, Borges MS, Ximenes VF. Quercetin: Prooxidant effect and apoptosis in cancer. Stud Nat Prod Chem 2018;58:265-88.

Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res 2001;475:89-111.

Published

07-05-2021

How to Cite

B, A., and K. G. “GENOTOXIC AND ANTIGENOTOXIC POTENTIAL OF THE LAGENANDRA TOXICARIA DALZ. RHIZOME METHANOL EXTRACT USING ALLIUM CEPA ASSAY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 5, May 2021, pp. 82-90, doi:10.22159/ajpcr.2021.v14i5.41174.

Issue

Section

Original Article(s)