SIMVASTATIN-LOADED NANOCAPSULES REDUCE TNF-Α EXPRESSION IN RAT PERITONEUM AFTER INFUSION OF PERITONEAL DIALYSIS SOLUTION
DOI:
https://doi.org/10.22159/ajpcr.2021.v14i7.41562Keywords:
Chronic renal insufficiency, Encapsulating peritonitis, HMG-CoA reductase inhibitor, Interleukin-6, Nanotechnology, Peritoneal fibrosis, Tumor necrosis factor-alphaAbstract
Objective: Obteinment and characterizing polymeric nanocapsules of simvastatin (SV), and investigating their action in an experimental model of peritoneal fibrosis induced in a rat by the infusion of peritoneal dialysis (PD) solution.
Methods: Poly (ε-caprolactone) nanocapsules containing SV (NC-SV) were prepared by interfacial deposition of a preformed polymer. A suspension of nanoparticles with no drug was prepared as negative control. The average particle size and polydispersity index were measured by photon correlation spectroscopy. The morphological and surface evaluation of prepared nanocapsules was performed using field emission scanning electron microscopy. The ultra-high performance liquid chromatography with photodiode array detection method was used to evaluate the drug encapsulation efficiency. The release profiles of SV from polymeric nanocapsules were obtained by dialysis diffusion technique. The Animal Study was performed in a total of 48 male Wistar rats (Rattus norvegicus) divided in four groups: Sham, PD group, SV group, and Simvastatin-loaded nanocapsules group (NC-SV). After 28 days, tissue samples were surgically removed from the abdominal to perform histological and immunohistochemistry analysis. The statistical analysis was performed by one-way ANOVA followed by Bonferroni test, or by Kruskal–Wallis.
Results: NC-SV presented suitable particle parameters with a mean particle size of 332 nm, and an encapsulation efficiency of 99.87±0.46%. The expression of tumor necrosis factor-alpha (TNF-α) was significantly different in NC-SV group.
Conclusion: SV-loaded nanocapsules for controlled drug delivery were suitably prepared. This nanoformulation remarkable decreased the TNF-α tissue expression even at low SV dose in a chronic PD model.
Downloads
References
United States Renal Data Systems. Available from: https://www. usrds.org/2019/view/USRDS_2019_ES_final.pdf. [Last accessed on 2020 Jan 09].
ERA-EDTA Registry: ERA-EDTA Registry Annual Report 2017. Amsterdam, Netherlands: Amsterdam UMC, location AMC, Department of Medical Informatics; 2019. Available from: https:// www.era-edta.org/en/registry/publications/annual-reports/#2017.
Trevisani HA. Fibrosis peritoneal. Rev Nefrol Diál Trasp 2015;35:101-18.
Tseng CC, Chen JB, Wang IK, Liao SC, Cheng BC, Wu AB, et al. Incidence and outcomes of encapsulating peritoneal sclerosis (EPS) and factors associated with severe EPS. PLoS One 2018;13:e0190079. DOI: https://doi.org/10.1371/journal.pone.0190079
Vidal E, Edefonti A, Puteo F, Chimenz R, Gianoglio B, Lavoratti G, et al, Italian Registry of Pediatric Chronic Dialysis. Encapsulating peritoneal sclerosis in paediatric peritoneal dialysis patients: The experience of the Italian registry of pediatric chronic dialysis. Nephrol Dial Transp 2013;28:1603-9. DOI: https://doi.org/10.1093/ndt/gft061
Shroff R, Stefanidis CJ, Askiti V, Edefonti A, Testa S, Ekim M, et al, European Paediatric Dialysis Working Group. Encapsulating peritoneal sclerosis in children on chronic PD: A survey from the European paediatric dialysis working group. Nephrol Dial Transp 2013;28:1908-14. DOI: https://doi.org/10.1093/ndt/gfs603
Davenport A. Late presentation of encapsulating peritoneal sclerosis following renal transplantation and the potential under-reporting of the incidence and prevalence of encapsulating peritoneal sclerosis. Nephrology 2015;20:499-501. DOI: https://doi.org/10.1111/nep.12477
Ayar Y, Ersoy A, Ocakoglu G, Gullulu E, Kagızmanlı H, Yıldız A, et al. Encapsulating peritoneal sclerosis in peritoneal dialysis patients after kidney transplantation. Transp Proc 2018;50:160-4. DOI: https://doi.org/10.1016/j.transproceed.2017.12.054
Nitsch D, Davenport A. Designing epidemiology studies to determine the incidence and prevalence of encapsulating peritoneal sclerosis (EPS). Perit Dial Int 2015;35:678-82. DOI: https://doi.org/10.3747/pdi.2015.00186
Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther 2015;40:508-16. DOI: https://doi.org/10.1111/jcpt.12318
Baroni G, Schuinski A, de Moraes TP, Meyer F, Pecoits-Filho R. Inflammation and the peritoneal membrane: Causes and impact on structure and function during peritoneal dialysis. Mediat Inflamm 2012;2012:912595. DOI: https://doi.org/10.1155/2012/912595
Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med 2019;381:1557-67. DOI: https://doi.org/10.1056/NEJMra1806939
Biasucci LM, Biasillo G, Stefanelli A. Inflammatory markers, cholesterol and statins: Pathophysiological role and clinical importance. Clin Chem Lab Med 2010;48:1685-91. DOI: https://doi.org/10.1515/CCLM.2010.277
Baroni G, Schuinski AF, Berticelli PT, Silva MA, Gouveia DS, Pecoits Filho R, et al. The influence of simvastatin in induced peritoneal fibrosis in rats by peritoneal dialysis solution with glucosis 4.25%. Acta Cir Bras 2012;27:350-6. DOI: https://doi.org/10.1590/S0102-86502012000400012
Yeniçerioglu Y, Uzelce O, Akar H, Kolatan E, Yilmaz O, Yenisey C, et al. Effects of atorvastatin on development of peritoneal fibrosis in rats on peritoneal dialysis. Ren Fail 2010;32:1095-102. DOI: https://doi.org/10.3109/0886022X.2010.508859
Chang TI, Kang HY, Kim KS, Lee SH, Nam BY, Paeng J, et al. The effect of statin on epithelial-mesenchymal transition in peritoneal mesothelial cells. PLoS One 2014;9:e109628. DOI: https://doi.org/10.1371/journal.pone.0109628
Yang X, Yin M, Yu L, Lu M, Wang H, Tang F, et al. Simvastatin inhibited oxLDL-induced proatherogenic effects through calpain-1- PPARγ-CD36 pathway. Can J Physiol Pharmacol 2016;94:1336-43. DOI: https://doi.org/10.1139/cjpp-2016-0295
Kim EK, Cho JH, Jeong AR, Kim EJ, Park DK, Kwon KA, et al. Anti-inflammatory effects of simvastatin in nonsteroidal anti-inflammatory drugs-induced small bowel injury. J Physiol Pharmacol 2017;68:69-77.
Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: A focus on nanoparticles as a drug delivery system. J Neuroimmun Pharmacol 2006;1:340-50. DOI: https://doi.org/10.1007/s11481-006-9032-4
Villanova JC, Orefice RL, Cunha AS. Aplicações farmacêuticas de polímeros. Pol Ciên Tecnol 2010;20:51-64. DOI: https://doi.org/10.1590/S0104-14282010005000009
Figueiras AR, Coimbra AB, Veiga FJ. Nanotecnologia na Saúde: Aplicação e perspectivas. Bolet Inform Geum 2014;5:14-26.
Murtaza G. Solubility enhancement of simvastatin: A review. Acta Pol Pharm 2012;69:581-90.
Rudnik LA, Farago PV, Manfron Budel J, Lyra A, Barboza FM, Klein T, et al. Co-loaded curcumin and methotrexate nanocapsules enhance cytotoxicity against non-small-cell lung cancer cells. Molecules 2020;25:1913. DOI: https://doi.org/10.3390/molecules25081913
Clementino A, Sonvico F. Development and validation of a RP-HPLC method for the simultaneous detection and quantification of simvastatin’s isoforms and coenzyme Q10 in lecithin/chitosan nanoparticles. J Pharm Biomed Anal 2018;155:33-41. DOI: https://doi.org/10.1016/j.jpba.2018.03.046
Camargo GA, Cray da Costa Filha AR, Lyra A, Novatski A, Nadal JM, Lara LS, et al. Stability testing of tacrolimus-loaded poly (ԑ-caprolactone) nanoparticles by physicochemical assays and Raman spectroscopy. Vibration Spectrosc 2020;110:103139. DOI: https://doi.org/10.1016/j.vibspec.2020.103139
Mattiazzi J, Marcondes Sari MH, Brum TB, Araújo PC, Nadal JM, Farago PV, et al. 3,3’-Diindolylmethane nanoencapsulation improves its antinociceptive action: Physicochemical and behavioral studies. Colloids Surf B Biointerfaces 2019;181:295-304. DOI: https://doi.org/10.1016/j.colsurfb.2019.05.063
Gomes ML, da Silva Nascimento N, Borsato DM, Pretes AP, Nadal JM, Novatski A, et al. Long-lasting anti-platelet activity of cilostazol from poly(ε-caprolactone)-poly(ethylene glycol) blend nanocapsules. Mater Sci Eng C Mater Biol Appl 2019;94:694-702. DOI: https://doi.org/10.1016/j.msec.2018.10.029
Gambhire M, Bhalekar M, Shrivastava B. Bioavailability assessment of simvastatin loaded solid lipid nanoparticles after oral administration. Asian J Pharm Sci 2011;6:251-8.
Zhang Z, Bu H, Gao Z, Huang Y, Gao F, Li Y. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm 2010;394:147-53. DOI: https://doi.org/10.1016/j.ijpharm.2010.04.039
Shinde AJ, More HN. Design and evaluation of polylactic-co-glycolic acid nanoparticles containing simvastatin. Int J Drug Dev Res 2011;3:280-9.
Fathi HA, Allam A, Elsabahy M, Fetih G, El-Badry M. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids Surf B Biointerfaces 2018;162:236-45. DOI: https://doi.org/10.1016/j.colsurfb.2017.11.064
MacDonald JS, Halleck MM. The toxicology of HMG-CoA reductase inhibitors: Prediction of human risk. Toxicol Pathol 2004;32:26-41. DOI: https://doi.org/10.1080/01926230490462057
Anbinder AL, Prado Fde A, Prado Mde A, Balducci I, Rocha RF. The influence of ovariectomy, simvastatin and sodium alendronate on alveolar bone in rats. Braz Oral Res 2007;21:247-52. DOI: https://doi.org/10.1590/S1806-83242007000300010
Claassen V. In: Huston JP, editor. Neglected Factors in Pharmacology and Neuroscience Research: Biopharmaceutics, Animal Characteristics Maintenance, Testing Conditions. 1st ed. Amsterdam, Netherlands: Elsevier Science; 1995.
Karsdal M. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers. 2nd ed. Amsterdam, Netherlands: Elsevier Science; 2019.
Kinder JM, Then JE, Hansel PM, Molinero LL, Bruns HA. Long-term repeated daily use of intragastric gavage hinders induction of oral tolerance to ovalbumin in mice. Comp Med 2014;64:369-76.
Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017;17:733-45. DOI: https://doi.org/10.1038/nri.2017.101
Mendes M, Soares HT, Arnaut LG, Sousa JJ, Pais AA, Vitorino C. Can lipid nanoparticles improve intestinal absorption? Int J Pharm 2016;515:69-83. DOI: https://doi.org/10.1016/j.ijpharm.2016.09.065
Tong F, Dong B, Chai R, Tong K, Wang Y, Chen S, et al. Simvastatin nanoparticles attenuated intestinal ischemia/reperfusion injury by downregulating BMP4/COX-2 pathway in rats. Int J Nanomed 2017;12:2477-88. DOI: https://doi.org/10.2147/IJN.S126063
Chu F, Wang M, Ma H, Zhu J. Simvastatin modulates interaction between vascular smooth muscle cell/macrophage and TNF-α-activated endothelial cell. J Cardiovasc Pharmacol 2018;71:268-74. DOI: https://doi.org/10.1097/FJC.0000000000000567
Kishimoto T. IL-6: From its discovery to clinical applications. Int Immunol 2010;22:347-52. DOI: https://doi.org/10.1093/intimm/dxq030
Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 2008;181:2189-95. DOI: https://doi.org/10.4049/jimmunol.181.3.2189
Alston H, Fan S, Nakayama M. Encapsulating peritoneal sclerosis. Semin Nephrol 2017;37:93-102. DOI: https://doi.org/10.1016/j.semnephrol.2016.10.010
Published
How to Cite
Issue
Section
Copyright (c) 2021 GILBERTO BARONI, MYLENA FERNANDA Ferronato, GUILHERME DOS ANJOS Camargo, AMANDA MARTINEZ Lyra, PÉRICLES MARTIM Reche, JESSICA MENDES Nadal, ANDRESSA NOVATSKI, LEANDRO CAVALCANTE Lipinski, PAULO VITOR FARAGO, PAULO VITOR FARAGO
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.