HEPARAN SULFATE: LANDING SITE FOR THE DENGUE VIRAL STRAINS TO GAIN ENTRY TO THE HOST CELLS
DOI:
https://doi.org/10.22159/ajpcr.2021.v14i11.42536Keywords:
DENV, Envelope protein, Heparan sulfate, Conserved domainsAbstract
Humans usually contract dengue by being bitten by arthropods, and more than 3.6 billion people are at risk per year. Although studies are conducted to screen and trace out the possible pathophysiology of the virus, an adequate receptor-based study has not been completed. Understanding how the dengue virus (DV) engraves its landing sites requires identification of such cellular receptors. In many model studies, heparan sulfate (HS) has been reported to act as a DV receptor under various conditions. However, the physiological relevance of these findings remains uncertain. Therefore, it is still unclear whether HS is used by viral strains or not, and if at all used by clinical or non-cell culture-adapted strains of DV. The present review aims to identify relevant experimental evidences that confirm the possible interaction between envelope protein and HS chains. We collected data from a series of studies to conclude the interactive role.
Downloads
References
Gabriel M, Navarro GS, de Borba L, Rossi AH, Gamarnik AV, Estrada LC. Dengue virus capsid protein dynamics reveals spatially heterogeneous motion in live-infected-cells. Sci Rep 2020;10:8751. DOI: https://doi.org/10.1038/s41598-020-65625-6
Iglesias NG, Mondotte JA, Byk LA, de Maio FA, Samsa MM, Alvarez C, et al. Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 2015;16:962-77. DOI: https://doi.org/10.1111/tra.12305
Biswas P, Ganguly S, Debnath B. Dengue fever: Stages, complication, diagnosis, and prevention strategies. Asian J Pharm Clin Res 2021;14:3-11. DOI: https://doi.org/10.22159/ajpcr.2021.v14i5.40960
Chen WB, Maguire T. Nucleotide sequence of the envelope glycoprotein gene of a dengue-2 virus isolated during an epidemic of benign dengue fever in Tonga in 1974. Nucleic Acids Res 1990;18:5889. DOI: https://doi.org/10.1093/nar/18.19.5889
Malacrida L, Hedde PN, Ranjit S, Cardarelli F, Gratton E. Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. Biomed Opt Express 2017;9:303-21. DOI: https://doi.org/10.1364/BOE.9.000303
Acharya D, Paul AM, Anderson JF, Huang F, Bai F. Loss of glycosaminoglycan receptor binding after mosquito cell passage reduces chikungunya virus infectivity. PLoS Negl Trop Dis 2015;9:e0004139. DOI: https://doi.org/10.1371/journal.pntd.0004139
Bacia K, Haustein E, Schwille P. Fluorescence correlation spectroscopy: Principles and applications. Cold Spring Harb Protoc 2014;2014:709-25. DOI: https://doi.org/10.1101/pdb.top081802
Acosta EG, Piccini LE, Talarico LB, Castilla V, Damonte EB. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in vero or C6/36 cells. Virus Res 2014;184:39-43. DOI: https://doi.org/10.1016/j.virusres.2014.02.011
Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: A systematic analysis. Lancet Infect Dis 2016;16:935-41. DOI: https://doi.org/10.1016/S1473-3099(16)00146-8
Medagama A, Dalugama C, Meiyalakan G, Lakmali D. Risk factors associated with fatal dengue hemorrhagic fever in adults: A case control study. Can J Infect Dis Med Microbiol 2020;2020:1042976. DOI: https://doi.org/10.1155/2020/1042976
Kalyani G, Thanushree N. The dengue vaccines: Assessment of future prospects, treatment, and vaccine challenges. Asian J Pharm Clin Res 2020;13:4-9. DOI: https://doi.org/10.22159/ajpcr.2020.v13i6.37366
Cojandaraj L, Para HS, Tsepal T, Kumari S. Dengue predominance in India: A report. Asian J Pharm Clin Res 2020;13:5-9. DOI: https://doi.org/10.22159/ajpcr.2020.v13i7.37602
He Y, Wang M, Chen S, Cheng A. The role of capsid in the flaviviral life cycle and perspectives for vaccine development. Vaccine 2020;38:6872-81. DOI: https://doi.org/10.1016/j.vaccine.2020.08.053
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL. The global distribution and burden of dengue. Nature 2013;496:504-7. DOI: https://doi.org/10.1038/nature12060
Bhatt P, Sabeena S P and Varma M. Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol 2021;78:17-32. DOI: https://doi.org/10.1007/s00284-020-02284-w
Morando MA, Barbosa GM, Cruz-Oliveira C, da Poian AT, Almeida FC. Dynamics of Zika virus capsid protein in solution: The properties and exposure of the hydrophobic cleft are controlled by the alpha-helix 1 sequence. Biochemistry 2019;58:2488-98. DOI: https://doi.org/10.1021/acs.biochem.9b00194
Cagno V, Andreozzi P, D’Alicarnasso M, Silva PJ, Mueller M, Galloux M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater 2018;17:195-203. DOI: https://doi.org/10.1038/nmat5053
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses 2019;11:596. DOI: https://doi.org/10.3390/v11070596
Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa- Lima G, da Poian AT. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 2009;5:e1000632. DOI: https://doi.org/10.1371/journal.ppat.1000632
Tan TY, Fibriansah G, Lok SM. Capsid protein is central to the birth of flavivirus particles. PLoS Pathog 2020;16:e1008542. DOI: https://doi.org/10.1371/journal.ppat.1008542
Cheng CC, Sofiyatun E, Chen WJ, Wang LC. Life as a vector of dengue virus: The antioxidant strategy of mosquito cells to survive viral infection. Antioxidants (Basel) 2021;10:395. DOI: https://doi.org/10.3390/antiox10030395
Kostyuchenko VA, Zhang Q, Tan JL, Ng TS, Lok SM. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol 2013;13:7700-7. DOI: https://doi.org/10.1128/JVI.00197-13
Chong ZL, Sekaran SD, Soe HJ. Diagnostic accuracy and utility of three dengue diagnostic tests for the diagnosis of acute dengue infection in Malaysia. BMC Infect Dis 2020;20:210. DOI: https://doi.org/10.1186/s12879-020-4911-5
Byk LA, Gamarnik AV. Properties and functions of the dengue virus capsid protein. Annu Rev Virol 2016;3:263-81. DOI: https://doi.org/10.1146/annurev-virology-110615-042334
Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MA, da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 2015;39:155-70. DOI: https://doi.org/10.1093/femsre/fuu004
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021;296:198343. DOI: https://doi.org/10.1016/j.virusres.2021.198343
Utomo DIS, Pambudi S, Sjatha F, Kato T, Park EY. Production of dengue virus-like particles serotype-3 in silkworm larvae and their ability to elicit a humoral immune response in mice. AMB Express 2020;10:147. DOI: https://doi.org/10.1186/s13568-020-01087-3
Scaturro P, Trist IM, Paul D, Kumar A, Acosta EG, Byrd CM, et al. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol 2014;88:11540-55. DOI: https://doi.org/10.1128/JVI.01745-14
Fahimi H, Mohammadipour M, Kashani HH, Parvini F, Sadeghizadeh M. Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018;102:2977-96.
Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA, Bozza PT, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J 2012;444:405-15. DOI: https://doi.org/10.1042/BJ20112219
Fahimi H, Mohammadipour M, Haddad Kashani H. Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018;102:2977-96. DOI: https://doi.org/10.1007/s00253-018-8822-y
Flores EB, Bartee MY, Bartee E. Reduced cellular binding affinity has profoundly different impacts on the spread of distinct poxviruses. PLoS One 2020;15:e0231977. DOI: https://doi.org/10.1371/journal.pone.0231977
Yong XE, Palur VR, Anand GS, Wohland T, Sharma KK. Dengue virus 2 capsid protein chaperones the strand displacement of 5’-3’ cyclization sequences. Nucleic Acids Res 2021;49:5832-44. DOI: https://doi.org/10.1093/nar/gkab379
Gopal S. Syndecans in inflammation at a glance. Front Immunol 2020;11:227. DOI: https://doi.org/10.3389/fimmu.2020.00227
Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 2013;158:1445-59. DOI: https://doi.org/10.1007/s00705-013-1645-3
Kumar R, Singh N, Abdin MZ, Patel AH, Medigeshi GR. Dengue virus capsid interacts with DDX3X-a potential mechanism for suppression of antiviral functions in dengue infection. Front Cell Infect Microbiol 2018;7:542. DOI: https://doi.org/10.3389/fcimb.2017.00542
Hao C, Xu H, Yu L, Zhang L. Heparin: An essential drug for modern medicine. Prog Mol Biol Transl Sci 2019;163:1-19. DOI: https://doi.org/10.1016/bs.pmbts.2019.02.002
Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health 2011;39:37-43.
Idrees S, Ashfaq UA. A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. Genet Vaccines Ther 2012;10:6. DOI: https://doi.org/10.1186/1479-0556-10-6
Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health 2011;39 Suppl 4:37-43. DOI: https://doi.org/10.2149/tmh.2011-S03
Lim MQ, Kumaran EA, Tan HC, Lye DC, Leo YS, Ooi EE, et al. Cross-reactivity and anti-viral function of dengue capsid and NS3-specific memory T cells toward zika virus. Front Immunol 2018;9:2225. DOI: https://doi.org/10.3389/fimmu.2018.02225
Kobayashi K, Mizuta K, Koike S. Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog 2020;16:e1008428. DOI: https://doi.org/10.1371/journal.ppat.1008428
Kreuger J, Kjellén L. Heparan sulfate biosynthesis: Regulation and variability. J Histochem Cytochem 2012;60:898-907. DOI: https://doi.org/10.1369/0022155412464972
Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, et al. Complete genome sequences of five Zika virus isolates. Genome Announc 2016;4:e00377-16. DOI: https://doi.org/10.1128/genomeA.00377-16
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023. DOI: https://doi.org/10.1038/sigtrans.2017.23
Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 2015;7:304ra142. DOI: https://doi.org/10.1126/scitranslmed.aaa3863
Okumura M, Matsuura-Miura M, Makino R. Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells. Sci Rep 2020;10:8530. DOI: https://doi.org/10.1038/s41598-020-65545-5
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020;5:796-812. DOI: https://doi.org/10.1038/s41564-020-0714-0
Saeed AF, Wang R, Ling S, Wang S. Antibody engineering for pursuing a healthier future. Front Microbiol 2017;8:495. DOI: https://doi.org/10.3389/fmicb.2017.00495
Sharma A, Vasanthapuram RM, Venkataswamy M. Prohibitin 1/2 mediates dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci 2020;27:55. DOI: https://doi.org/10.1186/s12929-020-00639-w
Shi D, Sheng A, Chi L. Glycosaminoglycan-protein interactions and their roles in human disease. Front Mol Biosci 2021;8:639666. DOI: https://doi.org/10.3389/fmolb.2021.639666
Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-dependent enhancement: A challenge for developing a safe dengue vaccine. Front Cell Infect Microbiol 2020;10:572681. DOI: https://doi.org/10.3389/fcimb.2020.572681
Davis DA, Parish CR. Heparan sulfate: A ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013;4:470. DOI: https://doi.org/10.3389/fimmu.2013.00470
St John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 2019;19:218-30. DOI: https://doi.org/10.1038/s41577-019-0123-x
Tang TC, Alonso S, Ng LP. Increased serum hyaluronic acid and heparan sulfate in dengue fever: Association with plasma leakage and disease severity. Sci Rep 2017;7:46191. DOI: https://doi.org/10.1038/srep46191
Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW, Pang SW, et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 2013;87:2693-706. DOI: https://doi.org/10.1128/JVI.02675-12
Annaval T, Wild R, Crétinon Y, Sadir R, Vivès RR, Lortat-Jacob H. Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules 2020;25:4215. DOI: https://doi.org/10.3390/molecules25184215
Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virol 2015;10:625-45. DOI: https://doi.org/10.2217/fvl.15.35
Mii Y, Takada S. Heparan sulfate proteoglycan clustering in wnt signaling and dispersal. Front Cell Dev Biol 2020;8:631. DOI: https://doi.org/10.3389/fcell.2020.00631
Schuurs ZP, Hammond E, Elli S, Rudd TR, Mycroft-West CJ, Lima MA, et al. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Comput Struct Biotechnol J 2021;19:2806-18. DOI: https://doi.org/10.1016/j.csbj.2021.05.002
Lia RA, Lutfan L, Yien LH, Asa H, Kusnanto H, Rocklöv J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One 2016;11:1-18. DOI: https://doi.org/10.1371/journal.pone.0152688
Published
How to Cite
Issue
Section
Copyright (c) 2021 ABDUL GHAYUM PAPULZAI, NIKHIYA MANUEL JOHN, SUDHAKAR MALLA
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.