EXPLORING LIPID-BASED DRUG DELIVERY IN CANCER THERAPY VIA LIPOSOMAL FORMULATIONS
DOI:
https://doi.org/10.22159/ajpcr.2022.v15i5.43668Keywords:
Lipid, Drug delivery systems, Liposome, Cancer, TreatmentAbstract
In many countries across the world, cancer is a leading cause of death. Cancer is the biggest cause of death worldwide, with approximately 10 million fatalities expected in 2020, accounting for nearly one in every six deaths. Mutations in ~300 human genes can unleash cell division, potentially leading to cancer. The effectiveness of existing conventional therapies for a number of cancers is, however, inefficient in terms of safety and efficacy. Medication systems based on lipid can be configured to treat tumors passively with increasing safety by reducing toxicity and increasing efficacy by target drug delivery. Lipid-based drug dosage form is the new identified technological design to overcome problems such as water-soluble solubility and bioavailability. A wide range of product specifications determined by indication of disease, route of administration, price evaluation, safety, toxicity, and efficiency could be customized to lipid formulations. This analysis explores the current state of lipid drug delivery studies, including the production of cancer liposomes, different cancer-focused strategies, and liposomal formulation of numerous anti-cancer drugs.
Downloads
References
Nygren P. What is cancer chemotherapy? Acta Oncol (Madr) 2001;40:166-74. doi: 10.1080/02841860151116204
Houshmand M, Garello F, Circosta P, Stefania R, Aime S, Saglio G, et al. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials (Basel) 2020;10:276. doi: 10.3390/nano10020276, PMID 32041219
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev 2016;25:16-27. doi: 10.1158/1055-9965.EPI-15-0578, PMID 26667886
Dickens E, Ahmed S. Principles of cancer treatment by chemotherapy. Surgery (UK) 2018;36:134-8. doi: 10.1016/j.mpsur.2017.12.002
Chabner BA, Roberts TG. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 2005;5:65-72. doi: 10.1038/nrc1529, PMID 15630416
Qin SY, Cheng YJ, Lei Q, Zhang AQ, Zhang XZ. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018;171:178-97. doi: 10.1016/j.biomaterials.2018.04.027, PMID 29698868
DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008;68:8643-53. doi: 10.1158/0008-5472.CAN-07-6611, PMID 18974103
Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf B Biointerfaces 2015;126:631-48. doi: 10.1016/j. colsurfb.2014.12.041, PMID 25591851
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017;267:100-18. doi: 10.1016/j. jconrel.2017.09.026, PMID 28958854
Sachdeva MS. Drug targeting systems for cancer chemotherapy. Expert Opin Investig Drugs 1998;7:1849-64. doi: 10.1517/13543784.7.11.1849, PMID 15991934
Fais S. A nonmainstream approach against cancer. J Enzyme Inhib Med Chem 2016;31:882-9. doi: 10.3109/14756366.2016.1156105, PMID 26972280
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016;38:1551-66. doi: 10.1016/j.clinthera.2016.03.026, PMID 27158009
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov Today 2010;15:842-50. doi: 10.1016/j.drudis.2010.08.006, PMID 20727417
Helmink BA, Khan MA, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019;25:377-88. doi: 10.1038/s41591-019-0377-7, PMID 30842679
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020;5:8. doi: 10.1038/s41392-020-0110-5, PMID 32296030
Padma VV. An overview of targeted cancer therapy. Biomedicine 2015;5:19. doi: 10.7603/s40681-015-0019-4, PMID 26613930
Reimann M, Schmitt CA. Apoptosis and cancer therapy. Apoptosis Cell Signal Hum Dis 2007;1:303-20.
Jussawalla DJ. Recent advances in cancer. Indian Med J 1952;46:171-5. PMID 12980715
Alexis F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticles technologies for cancer therapy. Handb Exp Pharmacol 2010;197:55-86. doi: 10.1007/978-3-642-00477-3_2
Kim S. Liposomes as carriers of cancer chemotherapy: Current status and future prospects. Drugs 1993;46:618-38. doi: 10.2165/00003495- 199346040-00004, PMID 7506649
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128-47. doi: 10.1208/aapsj0902015, PMID 17614355
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012;64:24-36.
Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel paradigms for cancer therapy. Oncogene 2011;30:1-20. doi: 10.1038/onc.2010.460, PMID 20935674
Bangham CR, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 2015;14:93-100. doi: 10.1016/j.coviro.2015.09.004, PMID 26414684
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018;81:17-38. doi: 10.1007/s00280-017-3501-8, PMID 29249039
Ramos P, Bentires-Alj M. Mechanism-based cancer therapy: Resistance to therapy, therapy for resistance. Oncogene 2015;34:3617-26. doi: 10.1038/onc.2014.314, PMID 25263438
Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol 2008;26:74-85. doi: 10.1016/j.urolonc.2007.03.017, PMID 18190835
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70. doi: 10.1016/s0092-8674(00)81683-9, PMID 10647931
Hodgson S. Mechanisms of inherited cancer susceptibility. J Zhejiang Univ Sci B 2008;9:1-4. doi: 10.1631/jzus.B073001, PMID 18196605
Perera FP. Environment and cancer: Who are susceptible? Science 1997;278:1068-73. doi: 10.1126/science.278.5340.1068, PMID 9353182
Hoskins WJ, Perez CA, Young RC, Barakat RR. Principles and Practice of Gynecologic Oncology. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2005.
Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 2009;263:12-9. doi: 10.1016/j.tox.2009.01.019, PMID 19651324
Makin G, Hickman JA. Apoptosis and cancer chemotherapy. Cell Tissue Res 2000;301:143-52. doi: 10.1007/s004419900160, PMID 10928287
Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008;8:59-73. doi: 10.1038/nri2216, PMID 18097448
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017;17:97-111. doi: 10.1038/nri.2016.107, PMID 27748397
Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44:343-54. doi: 10.1016/j.immuni.2015.11.024, PMID 26872698
Ichim CV. Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy. J Transl Med 2005;3:8. doi: 10.1186/1479-5876-3-8, PMID 15698481
Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol 2013;4:143. doi: 10.3389/ fphar.2013.00143, PMID 24319430
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003;8:1112-20. doi: 10.1016/s1359- 6446(03)02903-9, PMID 14678737
Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: From basics to clinical applications. J Control Release 1998;53:275-9. doi: 10.1016/s0168-3659(97)00261-7, PMID 9741935
Prajapati BG. A review on pegylated liposome in cancer therapy and in delivery of biomaterial. Pharm Rev 2007;6:153-61.
Allen TM. Liposomes. Opportunities in drug delivery. Drugs 1997;54:8-14. doi: 10.2165/00003495-199700544-00004, PMID 9361956
Himanshu A, Sitasharan P, Singhai AK. Liposomes as drug carriers. IJPLS 2011;2:945-51.
Chrai SS, Murari R, Imran A. Liposomes: A review. Bio Pharm 2001;14:10-4.
Andreas W, Karola VU. Liposome technology for industrial purposes. J Drug Deliv 2011;2011:9.
Atrooz OM. Effects of alkylresorcinolic lipids obtained from acetonic extract of Jordanian wheat grains on liposome properties. Int J Biol Chem 2011;5:314-21. doi: 10.3923/ijbc.2011.314.321
Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 2002;68:3683-90. doi: 10.1128/AEM.68.8.3683-3690.2002, PMID 12147460
Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 2008;359:272-9. doi: 10.1016/j. ijpharm.2008.04.004, PMID 18486370
Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 2007;1768:1121-7. doi: 10.1016/j.bbamem.2007.01.019, PMID 17321495
Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anti Cancer Drugs 2005;16:691-707. doi: 10.1097/01.cad.0000167902.53039.5a, PMID 16027517
Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 2002;64:1407-13. doi: 10.1016/s0006- 2952(02)01346-1, PMID 12392822
Schiffelers RM, Storm G, Bakker-Woudenberg IA. Hosts. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res 2001;18:780-7. doi: 10.1023/a:1011080211226, PMID 11474781
Stano P, Bufali S, Pisano C, Bucci F, Barbarino M, Santaniello M, et al. Novel camptothecin analogue [gimatecan]-containing liposomes prepared by the ethanol injection method. J Liposome Res 2004;14:87- 109. doi: 10.1081/lpr-120039794, PMID 15461935
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015;10:81-98. doi: 10.1016/j.ajps.2014.09.004
Rieder AA, Koller D, Lohner K, Pabst G. Optimizing rapid solvent exchange preparation of multilamellar vesicles. Chem Phys Lipids 2015;186:39-44. doi: 10.1016/j.chemphyslip.2014.12.001, PMID 25532812
Bhatia T, Husen P, Brewer J, Bagatolli LA, Hansen PL, Ipsen JH, et al. Preparing giant unilamellar vesicles [GUVs] of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Biochim Biophys Acta 2015;1848:3175-80. doi: 10.1016/j.bbamem.2015.09.020, PMID 26417657
Motta I, Gohlke A, Adrien V, Li F, Gardavot H, Rothman JE, et al. Formation of giant unilamellar proteo-liposomes by osmotic shock. Langmuir 2015;31:7091-9. doi: 10.1021/acs.langmuir.5b01173, PMID 26038815
Karamdad K, Law RV, Seddon JM, Brooks NJ, Ces O. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip 2015;15:557-62. doi: 10.1039/ c4lc01277a, PMID 25413588
Gu Z, Da Silva CG, van der Maaden K, Ossendorp F, Cruz LJ. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 2020;12:1-25. doi: 10.3390/pharmaceutics12111054, PMID 33158166
Vahed SZ, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C Mater Biol Appl 2017;71:1327-41. doi: 10.1016/j.msec.2016.11.073, PMID 27987688
Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, et al. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat Rev 2011;37:633-42. doi: 10.1016/j.ctrv.2011.01.006, PMID 21330062
La-Beck NM, Gabizon AA. Nanoparticle interactions with the immune system: Clinical implications for liposome-based cancer chemotherapy. Front Immunol 2017;8:6-11. doi: 10.3389/fimmu.2017.00416, PMID 28428790
Silva R, Ferreira H, Little C, Cavaco-Paulo A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason Sonochem 2010;17:628-32. doi: 10.1016/j.ultsonch.2009.10.010, PMID 19914854
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014;177:8-18. doi: 10.1016/j.chemphyslip.2013.10.011, PMID 24220497.
Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci 2014;9:176-82. doi: 10.1016/j.ajps.2014.06.001
Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of formulation method, lipid composition, and pegylation on vesicle Lamellarity: A small-angle neutron scattering study. Langmuir 2019;35:6064-74. doi: 10.1021/acs.langmuir.8b04256, PMID 30977658
Parigoris E, Dunkelmann DL, Murphy A, Wili N, Kaech A, Dumrese C, et al. Facile generation of giant unilamellar vesicles using polyacrylamide gels. Sci Rep 2020;10:4824. doi: 10.1038/s41598- 020-61655-2, PMID 32179778
Kindt JT, Szostak JW, Wang A. Bulk self-assembly of giant, unilamellar vesicles. ACS Nano 2020;14:14627-34. doi: 10.1021/ acsnano.0c03125, PMID 32602696
Dave V, Gupta A, Singh P, Gupta C, Sadhu V, Reddy KR. Synthesis and characterization of celecoxib loaded pegylated liposome nanoparticles for biomedical applications. Nano Struct Nano Objects 2019;18:100288. doi: 10.1016/j.nanoso.2019.100288, PMID 100288
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2020;30:336-65. doi: 10.1080/08982104.2019.1668010, PMID 31558079
Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 2008;60:673-91. doi: 10.1016/j.addr.2007.10.014, PMID 18155801
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a nextgeneration drug delivery platform: State of the art, emerging technologies, and perspectives. Int J Nanomed 2019;14:1937-52. doi: 10.2147/IJN.S198353, PMID 30936695
Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 2008;60:625-37. doi: 10.1016/j.addr.2007.10.010, PMID 18068260
Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007;6:231-48. doi: 10.1038/nrd2197, PMID 17330072
Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric lipid hybrid nanoparticles [Plns] as emerging drug delivery platform-a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 2021;13:1291. doi: 10.3390/pharmaceutics13081291, PMID 34452251
Benoit JP, Ferrier T. Method for Preparing Functionalized Lipid Capsules Patent WO2010113111. Geneva, Switzerland: WIPO IP Portal; 2010.
Müller RH, Lucks JS. Medication Made of Solid Lipid Particles (Solid Lipid Nanospheres-SLN) Patent EP0605497. Geneva, Switzerland: WIPO IP Portal; 1996.
Westesen K, Siekmann B. Solid Lipid Particles, Particles of Bioactive Agents and Methods for the Manufacture and Use there of Patent WO9420072. Geneva, Switzerland: WIPO IP Portal; 1994.
Müller RH, Olbrich C. Lipid Matrix-drug Conjugates Particle for Controlled Release of Active Ingredient Patent US6770299. Geneva, Switzerland: WIPO IP Portal; 2004.
Hertault B, Saulnier P, Benoit JP, Proust JE, Pech B, Richard J. Lipid Nanocapsules, Preparation Method and Use as Medicine Patent WO0164328. Geneva, Switzerland: WIPO IP Portal; 2001.
Anton S, Saulnier P, Benoit JP. Aqueous Core Lipid Nanocapsules for Encapsulating Hydrophilic and/or Lipophilic Molecules Patent WO2009037310. Geneva, Switzerland: WIPO IP Portal; 2009.
Royere A, Bibette J, Bazile D. Monodispersed Solid Lipid Particle Compositions Patent US20070053988. Geneva, Switzerland: WIPO IP Portal; 2007.
Gao HY, Schwarz J, Weisspapir M. Hybrid Lipid-polymer Nanoparticulate Delivery Composition Patent US20080102127. Geneva, Switzerland: WIPO IP Portal; 2008.
Viladot Petit JL, Delgado Gonzales R, Fernandez Botello A. Lipid Nanoparticles Capsules Patent WO2011116963. Geneva, Switzerland: WIPO IP Portal; 2011.
Müller RH, Souto EB, Radtke M. Lipid Particles on the Basis of Mixtures of Liquid and Solid Lipids and Methods for Producing Same Patent EP00/04111. Geneva, Switzerland: WIPO IP Portal; 2000.
Müller RH. Medicament Vehicle for the Controlled Administration of an Active Agent, Produced from Lipid Matrix-medicament Conjugates Patent WO2000067800. Geneva, Switzerland: WIPO IP Portal; 2000.
Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev 2008;60:734-46. doi: 10.1016/j.addr.2007.09.006, PMID 18045728
Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev 2007;59:667-76. doi: 10.1016/j.addr.2007.05.006, PMID 17618704
Porter CJH, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 2001;50:S127-47. doi: 10.1016/ S0169-409X(01)00182-X
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems-an overview. Acta Pharmacol Sin B 2013;3:361-72. doi: 10.1016/j.apsb.2013.10.001
Bhupendra G, Patel NK, Panchal MM, Patel RP. Topical liposomes in drug delivery: A review. Int J Pavement Res Technol 2012;4:39-44.
Prajapati BG, Patel AP, Patel RP. Temperature sensitive liposomes for site specific drug Delivety. Int J Pharm Technol 2011;3:105-9.
Vakili-Ghartavol R, Rezayat SM, Faridi-Majidi R, Sadri K, Jaafari MR. Optimization of docetaxel loading conditions in liposomes: Proposing potential products for metastatic breast carcinoma chemotherapy. Sci Rep 2020;10:5569. doi: 10.1038/s41598-020-62501-1, PMID 32221371
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015;6:286. doi: 10.3389/fphar.2015.00286, PMID 26648870
Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug’s physicochemical properties. J Control Release 2009;139:73-80. doi: 10.1016/j.jconrel.2009.05.036, PMID 19508880
Sroda K, Rydlewski J, Langner M, Kozubek A, Grzybek M, Sikorski AF. Repeated injections of PEG-PE liposomes generate anti- PEG antibodies. Cell Mol Biol 2005;10:37-47.
Li M, Du C, Guo N, Teng Y, Meng X, Sun H, et al. Composition design and medical application of liposomes. Eur J Med Chem 2019;164:640-53. doi: 10.1016/j.ejmech.2019.01.007, PMID 30640028
Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: Principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 2009;162:1-16. doi: 10.1016/j. chemphyslip.2009.08.003, PMID 19703435
Puri A. Phototriggerable liposomes: Current research and future perspectives. Pharmaceutics 2013;6:1-25. doi: 10.3390/ pharmaceutics6010001, PMID 24662363
Maherani B, Arab-Tehrany E, Mozafari MR, Gaiani C, Linder M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr Nanosci 2011;7:436-52. doi: 10.2174/157341311795542453
Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. Neurorx 2005;2:99-107. doi: 10.1602/neurorx.2.1.99, PMID 15717061
Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. Sci World J 2014;2014:1-17. doi: 10.1155/2014/978351
Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opin Drug Deliv 2013;10:1003-22. doi: 10.1517/17425247.2013.766714, PMID 23373728
El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci 2008;34:203-22. doi: 10.1016/j.ejps.2008.05.002, PMID 18572392
Published
How to Cite
Issue
Section
Copyright (c) 2022 Dr. Bhupendra Prajapati, Krupali Thacker, Paul Rodriques
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.