ATTENUATION OF OXIDATIVE STRESS AND NEUROTOXICITY BY MK-801 (DIZOCILPINE) ON DIPENTYLPHTHALATE-INDUCED COGNITIVE DYSFUNCTION IN MICE

Authors

  • SANDHYA RANI GAUTAM Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India. https://orcid.org/0000-0001-8252-0664
  • SEEMA JAIN Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India. https://orcid.org/0000-0001-7677-4190
  • PRAMOD KUMARI MEDIRATTA Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India.
  • BANERJEE BD Department of Biochemistry, University College of Medical Sciences and GTB Hospital, New Delhi, India

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i10.45562

Keywords:

Phthalate, Oxidative stress, MK-801, Reactive oxygen species

Abstract

Objectives: The aim of our research is to study the effect of dipentylphthalate (DPeP), a plasticizer on cognition and various oxidative stress markers in mice, and to explore the modulatory effects of MK-801.

Methods: In the present study, experimental mice were orally treated with two doses (33 and 100 mg/kg) of DPeP for 28 days. Cognitive functions were assessed using spatial navigation task on Morris water maze (MWM) and step-down latency (SDL) in passive avoidance apparatus. Oxidative stress was assessed by examining the levels of malondialdehyde (MDA), glutathione (GSH), ferric-reducing antioxidant power (FRAP), and 8-hydroxy-deoxyguanosine (8-OH-dG) levels in whole brain of mice.

Results: DPeP exposure led to a statistically significant increase of latency in spatial navigation task and significant decline in the SDL in passive avoidance apparatus when compared to the control groups. Oxidative stress markers showed a significant increase following DPeP administration as seen with rise in levels of MDA, 8-OH-dG, and a fall in GSH and FRAP levels.

Conclusion: The present data suggest that DPeP could adversely affect learning and memory functions in mice by an oxidative stress-mediated neuronal damage and pre-administration of MK-801 has the potential to attenuate these effects.

Downloads

Download data is not yet available.

Author Biographies

SEEMA JAIN, Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India.

Professor, Department of Pharmacology, University College of Medical Sciences & GTB Hospital, Delhi- 110095

PRAMOD KUMARI MEDIRATTA, Department of Pharmacology, University College of Medical Sciences and GTB Hospital, New Delhi, India.

Professor, Department of Pharmacology, University College of Medical Sciences & GTB Hospital, Delhi- 110095

BANERJEE BD, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, New Delhi, India

Director Professor, Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Delhi- 110095

References

Chen H, Xin X, Liu M, Ma F, Yu Y, Huang J, et al. In utero exposure to dipentyl phthalate disrupts fetal and adult Leydig cell development. Toxicol Appl Pharmacol 2021;419:115514. doi: 10.1016/j. taap.2021.115514, PMID 33798595

Kelley KE, Hernández-Díaz S, Chaplin EL, Hauser R, Mitchell AA. Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. Environ Health Perspect 2012;120:379-84. doi: 10.1289/ehp.1103998, PMID 22169271

Erythropel HC, Maric M, Nicell JA, Leask RL, Yargeau V. Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl Microbiol Biotechnol 2014;98:9967-81. doi: 10.1007/s00253-014-6183-8, PMID 25376446

Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, et al. A global assessment of phthalates burden and related links to health effects. Environ Int 2016;97:212-36. doi: 10.1016/j.envint.2016.09.013, PMID 27669632

Kashyap D, Agarwal T. Concentration and factors affecting the distribution of phthalates in the air and dust: A global scenario. Sci Total Environ 2018;635:817-27. doi: 10.1016/j.scitotenv.2018.04.158, PMID 29710605

Bamai YA, Araki A, Kawai T, Tsuboi T, Saito I, Yoshioka E, et al. Exposure to phthalates in house dust and associated allergies in children aged 6-12 years. Environ Int 2016;96:16-23. doi: 10.1016/j. envint.2016.08.025, PMID 27588698

Kobrosly RW, Evans S, Miodovnik A, Barrett ES, Thurston SW, Calafat AM, et al. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6-10 years of age. Environ Health Perspect 2014;122:521-8. doi: 10.1289/ehp.1307063, PMID 24577876

Reyes JM, Price PS. Temporal trends in exposures to six phthalates from biomonitoring data: Implications for cumulative risk. Environ Sci Technol 2018;52:12475-83. doi: 10.1021/acs.est.8b03338, PMID 30272963

Tian MP, Liu LP, Wang H, Wang XF, Martin FL, Zhang J, et al. Phthalates induce androgenic effects at exposure levels that can be environmentally relevant in humans. Environ Sci Technol Lett 2018;5:232-6. doi: 10.1021/acs.estlett.8b00138

Domínguez-Romero E, Scheringer M. A review of phthalate pharmacokinetics in human and rat: What factors drive phthalate distribution and partitioning? Drug Metab Rev 2019;51:314-29. doi: 10.1080/03602532.2019.1620762, PMID 31116073

Branch LS. Consolidated Federal Laws of Canada, Canada Consumer Product Safety Act; 2020. Available from: https://www.laws-lois.justice. gc.ca/eng/acts/c-1.68/page-1.html [Last accessed on 2022 Jun 11].

Lee MM. Consumer Product Safety Improvement Act of 2008. Consumer Production Safety Issues. London: Premier League; 2009. p. 110-314.

Negev M, Berman T, Reicher S, Balan S, Soehl A, Goulden S, et al. Regulation of chemicals in children’s products: How U.S. and EU regulation impacts small markets. Sci Total Environ 2018;616-7:462- 71. doi: 10.1016/j.scitotenv.2017.10.198, PMID 29127800

Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, et al. NMDA receptors, cognition and schizophrenia--testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 2012;62:1401-12. doi: 10.1016/j.neuropharm.2011.03.015, PMID 21420987

Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. Eur J Pharmacol 2010;626:49-56. doi: 10.1016/j.ejphar.2009.10.014, PMID 19836379

Chang YC, Kim HW, Rapoport SI, Rao JS. Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: Cross-talk between excitotoxicity and neuroinflammation. Neurochem Res 2008;33:2318-23. doi: 10.1007/s11064-008-9731-8, PMID 18500552

Rammes G, Mattusch C, Wulff M, Seeser F, Kreuzer M, Zhu K, et al. Involvement of GluN2B subunit containing N-methyl-D-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer’s disease (AD). Neuropharmacology 2017;123:100-15. doi: 10.1016/j.neuropharm.2017.02.003, PMID 28174113

Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. Br J Pharmacol 2009;157:1301-17. doi: 10.1111/j.1476-5381.2009.00304.x, PMID 19594762

Xu L, Qiu X, Wang S, Wang Q, Zhao XL. NMDA receptor antagonist MK801 protects against 1-bromopropane-induced cognitive dysfunction. Neurosci Bull 2019;35:347-61. doi: 10.1007/s12264-018- 0321-8, PMID 30569431

Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 2005;1050:190-8. doi: 10.1016/j. brainres.2005.05.049, PMID 15987631

Mecocci P, Bladström A, Stender K. Effects of memantine on cognition in patients with moderate to severe Alzheimer’s disease: Post-hoc analyses of ADAS-cog and SIB total and single-item scores from six randomized, double-blind, placebo-controlled studies. Int J Geriatr Psychiatry 2009;24:532-8. doi: 10.1002/gps.2226, PMID 19274640

Pomara N, Ott BR, Peskind E, Resnick EM. Memantine treatment of cognitive symptoms in mild to moderate Alzheimer disease: Secondary analyses from a placebo-controlled randomized trial. Alzheimer Dis Assoc Disord 2007;21:60-4. doi: 10.1097/WAD.0b013e318032cf29, PMID 17334274

Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs: From basic science to novel clinical applications to CNS disorders. Drugs 2010;70:287-312. doi: 10.2165/11319230-000000000-00000, PMID 20166767

Hannas BR, Furr J, Lambright CS, Wilson VS, Foster PM, Gray LE Jr. Dipentyl phthalate dosing during sexual differentiation disrupts fetal testis function and postnatal development of the male sprague-dawley rat with greater relative potency than other phthalates. Toxicol Sci 2011;120:184-93. doi: 10.1093/toxsci/kfq386, PMID 21177253

Joshi H, Parle M. Brahmi rasayana improves learning and memory in mice. Evid Based Complement Alternat Med 2006;3:79-85. doi: 10.1093/ecam/nek014, PMID 16550227

Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, et al. Phenolic anti-inflammatory, antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 2001;22:993- 1005. doi: 10.1016/s0197-4580(01)00300-1, PMID 11755008

Jain S, Kumar CH, Suranagi UD, Mediratta PK. Protective effect of N-acetylcysteine on bisphenol A-induced cognitive dysfunction and oxidative stress in rats. Food Chem Toxicol 2011;49:1404-9. doi: 10.1016/j.fct.2011.03.032, PMID 21440025

Bareggi SR, Braida D, Gervasoni M, Carcassola G, Pollera C, Verzoni C, et al. Neurochemical and behavioural modifications induced by scrapie infection in golden hamsters. Brain Res 2003;984:237-41. doi: 10.1016/s0006-8993(03)03154-8, PMID 12932859

Euthanasia GC. In: Tuffery AA, editor. Laboratory Animals: An Introduction for New Experiments. Chinester, United Kingdom: John Wiley and Sons Ltd.; 1987. p. 171-7.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. doi: 10.1016/0003-2697(79)90738-3, PMID 36810

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-7. doi: 10.1016/0003-9861(59)90090-6, PMID 13650640

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 1996;239:70-6. doi: 10.1006/abio.1996.0292

Silva MJ, Furr J, Samandar E, Preau JL Jr., Gray LE, Needham LL, et al. Urinary and serum metabolites of di-n-pentyl phthalate in rats. Chemosphere 2011;82:431-6. doi: 10.1016/j.chemosphere.2010.09.052, PMID 20951405

Basha PM, Radha MJ. Gestational and lactational exposition to di-n-butyl phthalate increases neurobehavioral perturbations in rats: A three generational comparative study. Toxicol Rep 2020;7:480-91. doi: 10.1016/j.toxrep.2020.03.006, PMID 32292708

Radha MJ, Basha PM. Di (n)-butyl phthalate induced neuronal perturbations in rat brain tissues: A multigenerational assessment. Int J Biosci Psychiatr Technol 2017;8:794-800.

Yan B, Ma P, Chen S, Cheng H, Tang M, Sun Y, et al. Nimodipine attenuates dibutyl phthalate-induced learning and memory impairment in Kun Ming mice: An in vivo study based on bioinformatics analysis. Environ Toxicol 2021;36:821-30. doi: 10.1002/tox.23084, PMID 33336902

Ma P, Liu X, Wu J, Yan B, Zhang Y, Lu Y, et al. Cognitive deficits and anxiety induced by diisononyl phthalate in mice and the neuroprotective effects of melatonin. Sci Rep 2015;5:14676. doi: 10.1038/srep14676, PMID 26424168

Ferguson KK, Cantonwine DE, Rivera-González LO, Loch-Caruso R, Mukherjee B, Del Toro LV, et al. Urinary phthalate metabolite associations with biomarkers of inflammation and oxidative stress across pregnancy in Puerto Rico. Environ Sci Technol 2014;48:7018-25. doi: 10.1021/es502076j, PMID 24845688

Cao M, Pan W, Shen X, Li C, Zhou J, Liu J. Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. Chemosphere 2020;242:125206. doi: 10.1016/j.chemosphere.2019.125206, PMID 31678849

Xu B, Xu ZF, Deng Y, Liu W, Yang HB, Wei YG. Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: Involvement of oxidative stress and glutamate metabolism dysfunction. Toxicology 2012;300:112-20. doi: 10.1016/j. tox.2012.06.006, PMID 22722016

Da Cunha AA, Nunes FB, Lunardelli A, Pauli V, Amaral RH, De Oliveira LM, et al. Treatment with N-methyl-D-aspartate receptor antagonist (MK-801) protects against oxidative stress in lipopolysaccharide-induced acute lung injury in the rat. Int Immunopharmacol 2011;11:706-11. doi: 10.1016/j.intimp.2011.01.016, PMID 21296699

Published

07-10-2022

How to Cite

GAUTAM, S. R., S. JAIN, P. K. . MEDIRATTA, and B. BD. “ATTENUATION OF OXIDATIVE STRESS AND NEUROTOXICITY BY MK-801 (DIZOCILPINE) ON DIPENTYLPHTHALATE-INDUCED COGNITIVE DYSFUNCTION IN MICE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 10, Oct. 2022, pp. 103-8, doi:10.22159/ajpcr.2022.v15i10.45562.

Issue

Section

Original Article(s)