NANOSPONGES - A REVOLUTIONARY TARGETED DRUG DELIVERY NANOCARRIER: A REVIEW
DOI:
https://doi.org/10.22159/ajpcr.2023.v16i4.46453Keywords:
Nanosponges, Targeted drug delivery, Cyclodextrins, Nanocarrier, Enhanced bioavailabilityAbstract
Effective targeted drug delivery systems have long been a dream, but have been largely hampered by the complex chemistries involved in developing new systems. The creation of novel colloidal carriers known as nanosponges has the potential to resolve these issues. An innovative and developing technology called nanosponge provides regulated medication delivery for topical application. Highly porous nanosponges have a unique capacity to entrap active molecules and have the advantage of programmable release. Nanosponges are small three-dimensional porous structures about the size of nanometer that can contain many different drugs. These tiny sponges can move throughout the body until they meet a specific target site and attach to surfaces and begin to release the drug in a controlled and predictable manner. Because the drug can be delivered to a specific target site instead of circulating throughout the body, it is more effective for a given specific dose. They are easy to make and safe for biological use. Different types of cyclodextrins can be cross-linked using a carbonyl or a dicarboxylate chemical as a cross-linker to create nanosponges. This groundbreaking technology has been extensively investigated for the delivery of medications for oral, topical, and parental administrations. Vaccines, antibodies, proteins, and enzymes can all be effectively transported via Nanosponges. The current review emphasizes the methods, advantages, disadvantages, characterization, and applications of nanosponges.
Downloads
References
Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004;113:151-70. doi: 10.1016/j. jbiotec.2004.06.007, PMID 15380654
Saltzman W, Vladimir P. Drug Delivery Systems. New York City: McGraw Hill’s Access Science; 2008. doi: 10.1036/1097-8542.757275
Rahi N, Kumar K. Nanosponges: A new era of versatile drug delivery system. Univ J Pharm Res 2017;2:30-3.
Deng J, Chen QJ, Li W, Zuberi Z, Feng JX, Lin QL, et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J Mater Sci 2021;56:5995-6015. doi: 10.1007/s10853-020-05646-8
Ma M, Li D, Inventors; Appligene-Oncor SA, Assignee. Cyclodextrin Polymer Separation Materials. United States Patent Application US. 2001. p. 216.
Trotta F, Tumiatti W. Cross-linked polymers based on cyclodextrins for removing polluting agents. 2003;A1:WO03/085002. doi: 10.3762/ bjoc.8.235
Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system-review. J Pharm Pharm Sci 2012;15:103-11. doi: 10.22159/ijpps.2019v11i10.34812
Patel EK, Oswal RJ. Nanosponge and microsponges: A novel drug delivery system. Int J Res Pharm Chem 2012;2:237-44.
Singh A. Development and evaluation of cyclodextrin based nanosponges for bioavailability enhancement of poorly bioavailable drug. World J Pharm Pharm Sci 2017;6:805-36.
Jadhav PA, Jadhav SA. Review on: Nano-size delivery system. World J Pharm Pharm Sci 2017;6:433-44. doi: 10.20959/wjpps20179-9945
Amber V, Shailendra S, Swarnalatha S. Cyclodextrin based novel drug delivery systems. J Pharm Sci 2012;62:23-42.
Rajeswari C, Alka A, Javed A, Khar RK. Cyclodextrins in drug delivery: An update review. AAPS Pharm Sci Tech 2013;6:329-57.
Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponges loaded carbapol hydrogel. Indian J Pharm Educ Res 2011;45:25-31.
Swaminathan S, Vavia P, Trotta F, Torne S. Formulation of beta cyclodextrins based nanosponges of itraconazole. J Incl Phenom Macro Chem 2007;57:89-94.
Wong VN, Fernando G, Wagner AR, Zhang J, Kinsel GR, Zauscher S, et al. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 2009;25:1459-65. doi: 10.1021/la802723r,PMID 19123797
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. EP 2007;1:841.
Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayur Pharm 2011;2:1520-6.
Yadav G, Nanosponges PH. A boon to the targeted drug delivery system. J Drug Deliv Ther 2013;3:151-5.
Minelli R, Cavalli R, Fantozzi R, Dianzani C, Pettazzoni P, Ellis L, et al. Abstract 4431: Antitumor activity of nanosponge-encapsulated camptotechin in human prostate tumors. Cancer Res 2011;71(8_ Supplement):4431. doi: 10.1158/1538-7445.AM2011-4431
Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010;402:254-7. doi: 10.1016/j.ijpharm.2010.09.025, PMID 20888402
Patil BS, Mohite SK. Formulation design and development of artesunate nanosponge. Eur J Pharm Res 2016;3:206-11.
Wester RC, Patel R, Nacht S, Leyden J, Melendres J, Maibach H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J Am Acad Dermatol 1991;24(5 Pt 1):720-6. doi: 10.1016/0190-9622(91)70109-f, PMID 1869643
Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem 2008;62:23-42. doi: 10.1007/ s10847-008-9456-y
Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010;74:193-201. doi: 10.1016/j.ejpb.2009.11.003, PMID 19900544
Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym 2011;86:127-35. doi: 10.1016/j.carbpol.2011.04.022
Singh R, Nitin B, Jyotsana M, Horemat SN. Characterization of cyclodextrin inclusion complexes-a review. J Pharm Sci Technol 2010;2:171-83.
Nacht S, Kantz M. The microsponge: A novel topical programmable delivery system. In: David WO, Anfon HA editors. Topical Drug Delivery Systems. Vol. 42. New York: Marcel Dekker; 1992. p. 299-325.
Martin AN, Swarbrick J, Cammarrata A. In: Physical Pharmacy: Physical Chemical Principles in Pharmaceutical Sciences. Vol. 03. Philadelphia, PA: Lea and Febiger; 1991. p. 527.
Emanuele AD, Dinarvand R. Preparation, characterization and drug release from thermo responsive microspheres. Int J Pharmaceutics 1995;118:237-42.
Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel loaded nanosponges. Drug Deliv 2010;17:419-25. doi: 10.3109/10717541003777233, PMID 20429848
William K, Benjamin S, Eva H. Synthesis and Characterization of Nanosponges for Drug Delivery and Cancer Treatment. Available from: http://www.Vanderbilt.edu [Last accessed on 2011 Dec 20].
Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin based nanosponges for delivery of resveratrol: In vitro characterization, stability, cytotoxicity and permeation study. AAPS Pharm Sci Tech 2011;12:279-86. doi: 10.1208/s12249-011-9584-3, PMID 21240574
Vyas SP, Khar RK. Targeted and controlled drug delivery novel carrier systems. In: Molecular Basis of Targeted Drug Delivery. New Delhi: CBS Publishers and Distributors; 2008. p. 38-40.
Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 2006;56:209-13. doi: 10.1007/s10847-006-9085-2
Herbert AL, Martin MR, Gilbert SB. Pharmaceutical Dosage Forms: Disperse Systems. Vol. 02. New York City: Marcel Dekker Inc.; 2005. p. 88-105.
Liang L, Liu DP, Liang CC. Optimizing the delivery systems of chimeric RNA.DNA oligonucleotides. Eur J Biochem 2002;269:5753-8.
Aritomi H, Yamasaki Y, Yamada K, Khoshi MH. Development of sustained release formulation of chlorpheniramine maleate using powder coated microsponges prepared by dry impact blending method. J Pharm Sci Technol 1996;56:49-56.
Yurtdas G, Demirel M, Genc L. Inclusion complexes of fluconazole with beta-cyclodextrin: Physicochemical characterization and in vitro evaluation of its formulation. J Incl Phenom Macrocycl Chem 2011;70:429-35.
Zuruzi AS, MacDonald NC, Moskovits M, Kolmakov A. Metal oxide nanosponges as chemical sensors: Highly sensitive detection of hydrogen using nanospongetitania. Angew Chem Int Ed Engl 2007;46:4298-301. doi: 10.1002/anie.200700006, PMID 17458845
Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol 2011;16:367-76. doi: 10.3109/10837451003739289, PMID 20367024
Mamotra R, Bharti N, Bhandari N. Nanosponges as a potential carrier in novel drug delivery system. World J Pharm Sci 2016;5:415-24.
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Switzerland: Springer International Publishing; 2016.
Panda S, Vijayalakshmi SV, Pattnaik S, Swain RP. Nanosponges: A novel carrier for targeted drug delivery. Int J Pharm Tech Res 2015;8:213-24.
Dhavala PB, Kumar VS. An interesting nanosponges as a nanocarrier for novel drug delivery: A review. Int J Pharm Med Res 2017;5:1-7.
Khan KA, Bhargav E, Reddy KR, Sowmya C. Nanosponges: A new approach for drug targeting. Int J Pharm Pharm Res 2016;7:381-96.
Bezawada S, Charanjitha RM, Naveena GR. Nanosponges-a concise review for emerging trends. Int J Pharm Res Biomed Ana 2014;3:1.
Kurhe A, Kendre P, Pande V. Scaffold based drug delivery system: A special emphasis on nanosponges. Int J Pharm Drug Ana 2015;4:98-104.
Targe BM, Patil MP, Jahagirdar AC, Khandekar BD. Nanosponges-an emerging drug delivery system. Int J Inst Pharm Life Sci 2015;5:160-73.
Singh D, Soni GC, Prajapati SK. Recent advances in nanosponges as drug delivery system: A review article. Eur J Pharm Res 2016;3:364-71.
Ahmed RZ, Patil G, Zaheer Z. Nanosponges-a completely new nanohorizon: Pharmaceutical applications and recent advances. Drug Dev Ind Pharm 2012;39:1263-72.
Thakre AR, Gholse YN, Kasliwal RH. Nanosponges: A novel approach of drug delivery system. J Med Pharm Allied Sci 2016:78-92.
Jyoti P, Tulsi B, Popin K, Chetna B. An innovative advancement for targeted drug delivery: Nanosponges. Indo Glob J Pharm Sci 2016; 6:59-64.
Srinivas P, Sreeja K. Formulation and evaluation of voriconazole loaded nanosponges for oral and topical delivery. Int J Drug Dev Res 2013;5:55-68.
Kumar PS, Hematheerthani N, Ratna JV, Saikishore V. Design and characterization of miconazole nitrate loaded nanosponges containing vaginal gels. Int J Pharm Ana Res 2016;5:410-7.
Gangadharappa HV, Prasad SM, Singh RP. Formulation, in vitro evaluation of celecoxibnanosponge hydrogels for topical application. J Drug Deliv Sci Technol 2017;41:488-501. doi: 10.1016/j. jddst.2017.09.004
Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 2016;137:339-49. doi: 10.1016/j. carbpol.2015.10.080, PMID 26686138
Srinivas P, Reddy AJ. Formulation and evaluation of isoniazid nanosponges for topical delivery. Pharm Nanotechnol 2015;3:68-76. doi: 10.2174/2211738503666150501003906
Jilsha G, Viswanad V. Nanosponge loaded hydrogel of cephalexin for topical delivery. Int J Pharm Sci Res 2015;6:2781-9.
Mendes C, Meirelles GC, Barp CG, Assreuy J, Silva MA, Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr Polym 2018;195:586-92. doi: 10.1016/j.carbpol.2018.05.011, PMID 29805015
Trotta F, Caldera F, Cavalli R, Soster M, Riedo C, Biasizzo M, et al. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-dopa: Perspectives for the treatment of Parkinson’s disease. Expert Opin Drug Deliv 2016;13:1671-80. doi: 10.1080/17425247.2017.1248398, PMID 27737572
Jadhav NV, Vavia PR. Supercritical processed starch nanosponge as a carrier for enhancement of dissolution and pharmacological efficacy of fenofibrate. Int J Biol Macromol 2017;99:713-20. doi: 10.1016/j. ijbiomac.2017.03.002, PMID 28263809
Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2017;41:344-50. doi: 10.1016/j.jddst.2017.08.005
Arvapally S, Harini M, Harshitha G, kumar A. Formulation and in-vitro evaluation of glipizide nanosponges. Am J Pharm Tech Res 2017;7:341-61.
Priyanka D, Sindhu S, Saba M. Design development and evaluation of ibuprofen loaded nanosponges for topical application. Int J Chem Tech Res 2018;11:218-27.
Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013;18:619-25. doi: 10.3109/10837450.2011.649855, PMID 22235935
Sapino S, Carlotti ME, Cavalli R, Ugazio E, Berlier G, Gastaldi L, et al. Photochemical and antioxidant properties of gamma-oryzanol in betacyclodextrin-based nanosponges. J Inclus Phenom Macrocyclic Chem 2013;75:69-76. doi: 10.1007/s10847-012-0147-3
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012;8:2091-9. doi: 10.3762/bjoc.8.235, PMID 23243470
Li D, Ma M. Nanosponges for water purification. Clean Prod Processes 2000;2:112-6. doi: 10.1007/s100980000061
Arkas M, Allabashi R, Tsiourvas D, Mattausch EM, Perfler R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin ”nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 2006;40:2771-7. doi: 10.1021/es052290v, PMID 16683622
Di Nardo G, Roggero C, Campolongo S, Valetti F, Trotta F, Gilardi G. Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalton Trans 2009;33:6507-12. doi: 10.1039/b903105g, PMID 19672496
Duchěne D, Vaution C, Glomot F. Cyclodextrin, their value in pharmaceutical technology. Drug Dev Ind Pharm 1986;12:2193-215. doi: 10.3109/03639048609042630
Al-Marzouqi AH, Shehatta I, Jobe B, Dowaidar A. Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J Pharm Sci 2006;95:292-304. doi: 10.1002/jps.20535, PMID 16372306
Tayade PT, Vavia PR. Inclusion complexes of ketoprofen with β-cyclodextrins: Oral pharmacokinetics of ketoprofen in human. Indian J Pharm Sci 2006;68:164-70. doi: 10.4103/0250-474X.25709
Noriaki F, Seiji I, Saburo N. Advances in physical chemistry and pharmaceutical applications of cyclodextrins. Pure Appl Chem 2008;80:1511-24.
Rasheed A, Ashokkumar CK, Sravanthi VV. Cyclodextrins as drug carrier Molecule: A review. Sci Pharm 2008;76:567-98. doi: 10.3797/ scipharm.0808-05
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discov 2004;3:1023-35. doi: 10.1038/ nrd1576, PMID 15573101
Dai M, Xu X, Song J, Fu S, Gou M, Luo F, et al. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. J Cancer Lett 2011;312:189-96.
Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 2011;09:1-12.
Srikanth MV, Muralimohanbabu GV, Sreenivasarao N, Sunil SA, Balaji S, Ramanamurthy KV. Dissolution rate enhancement of poorly soluble bicalutamide using β-cyclodextrin inclusion complexation. Int J Pharm Pharm Sci 2010;2:191-8.
Blanchard J, Proniuk S. Some important considerations in the use of cyclodextrins. Pharm Res 1999;16:1796-8. doi: 10.1023/a:1011930821801, PMID 10644064
Thorstein L, Robert OF. Cyclodextrins in Solid Dosage Forms. Faculty of Pharmacy. University of Iceland, and Senior Partner, Strategic Business Solutions.
Radi AE, Eissa S. Electrochemistry of cyclodextrin inclusion complexes of pharmaceutical compounds. Open Chem Biol Methods J 2010;3:74- 85. doi: 10.2174/1875038901003010074
Naseri NG, Ashnagar A, Husseini F. Study of the inclusion complexation of piroxicam-β-cyclodextrin and determination of the stability constant (K) by UV-visible spectroscopy. Sci Iran 2007;14:308-15.
Reddy MN, Rehana T, Ramakrishna S, Chowdary KP, Prakash VD. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS PharmSci 2004;6:68-76.
Lu Z, Cheng B, Hu Y, Zhang Y, Zou G. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chem 2009;113:17-20. doi: 10.1016/j.foodchem.2008.04.042
Lucas-Abellán C, Fortea I, López-Nicolás JM, Núñez-Delicado E. Cyclodextrins as resveratrol carrier system. Food Chem 2007;104:39- 44. doi: 10.1016/j.foodchem.2006.10.068
Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998;98:1743-54. doi: 10.1021/cr970022c, PMID 11848947
Peeters J, Neeskens P, Tollenaere JP, Van Remoortere P, Brewster ME. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4 and 7. J Pharm Sci 2002;91:1414-22. doi: 10.1002/jps.10126, PMID 12115841
Bilensoy E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. New Jersey: John Wiley and Sons Inc.; 2011.
Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V. The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol Technol 2011;59:200-5. doi: 10.1016/j.postharvbio.2010.08.012
Seiler M. Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Ph Equilibria 2006;241:155-74. doi: 10.1016/j.fluid.2005.12.042
Harth E. Nanomedicine: Development of “Nanosponges” as Superior Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4 and 7. J Pharm Sci 2002;91:1414-22. doi: 10.1002/jps.10126, PMID 12115841
Bilensoy E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. New Jersey: John Wiley and Sons Inc.; 2011.
Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V. The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol Technol 2011;59:200-5. doi: 10.1016/j.postharvbio.2010.08.012
Seiler M. Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering. Fluid Ph Equilibria 2006;241:155-74. doi: 10.1016/j.fluid.2005.12.042
Harth E. Nanomedicine: Development of “Nanosponges” as Superior
Published
How to Cite
Issue
Section
Copyright (c) 2022 BHAGYAVATHI ANKEM, SAI LAKSHMI TEJASWI K, SAHITYA DEEPTHI M, Dr. BHAVANI B
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.