ASSESSMENT AND OUTCOME ON PREPARATIONS, CHARACTERIZATION OF TOPICAL TARGETED NANOSPONGE BASED DRUG DELIVERY: CRITICAL REVIEW
DOI:
https://doi.org/10.22159/ajpcr.2023.v16i5.46809Keywords:
Topical targeted, Nanosponge, particulate drug deliveryAbstract
The pharmaceutical Industry, and most of the drugs which come from synthetic chemistry possess poor water solubility and approximately 70% of drugs fall under such category. To improve solubility, drug absorption and bioavailability are a critical lookout for the formulation scientist. The current research activity for the development of dosage forms is concentrated on the development of particulate carrier systems such as microspheres and liposomes. Nanosponge is being prioritized to control the delivery of drug/APIs/phytoconstituents to particular the skin targetting. The drug delivery to skin can be prevented through the development of nanosponge. Topical nanosponge preparation can be delivered in the form of local anesthetics, anti-fungal, anti-acne, anti-wrinkle, etc. drugs. The present study highlights the developmental stages for the topical targeted nanosponge drug delivery. The review covers a different method of preparation, and evaluation of topical nanosponge drug delivery systems.
Downloads
References
Gangadharappa HV, Prasad SM, Singh RP. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J Drug Deliv Sci Technol 2017;41:488-501.
Thakre AR, Gholse N, Kasliwal H. Nanosponges: A novel approach of drug delivery system. J Med Pharm Allied Sci 2016:78-92.
Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system-review. J Pharm Pharm Sci 2012;15:103-11.
Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transferosomes. Biomed Res Int 2013;2013:616810. doi: 10.1155/2013/616810, PMID 23936825
Kolarsick P, Kolarsick MA, Goodwin C. Anatomy and physiology of the skin. J Dermatol Nurs Assoc 2011;3:203-13.
Abbas N, Parveen K, Hussain A, Latif S, Zaman SU, Shah PA, et al. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Res 2019;18:215-22. doi: 10.4314/tjpr. v18i2.1
Kaur S, Kumar S. Nanosponges: An innovative drug delivery system. Asian J Pharm Clin Res 2019;12:60-7.
Lee JS, Oh H, Kim S, Lee JH, Shin YC, Choi WI. A novel chitosan nanosponge as a vehicle for transepidermal drug delivery. Pharmaceutics 2021;13:1329.
Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. Novel drug delivery system of antifungal drug-formulation and characterization. J Drug Deliv Sci Technol 2019;55:101302.
Bhowmik H, Venkatesh DN, Kuila A, Kumar KH. Nanosponges: A review. Int J Appl Pharm 2018;10:1-5.
Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 2015;137:339-49.
Balwe MB. Nanosponge a novel drug delivery system. Res J Pharm Dosage Forms Technol 2020;12:261-6. doi: 10.5958/0975- 4377.2020.00043.9
Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol 2011;16:367-76. doi: 10.3109/10837451003739289, PMID 20367024
Jain A, Prajapati SK, Kumari A, Mody N, Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J Drug Deliv Sci Technol 2020;57:1-38. doi: 10.1016/j.jddst.2020.101643
Osmani RA, Kulkarni P, Gowda V, Vaghela R, Bhosale R. Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics. Ch. 9. Cham: Springer International Publishing; 2018. p. 280-332.
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019;565:333-50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017;173:37-49. doi: 10.1016/j.carbpol.2017.05.086, PMID 28732878
Rao MR, Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of gabapentin for reconstitution. Drug Dev Ind Pharm 2015;41:2029-36.
Iriventi P, Gupta NV, Osmani RA, Balamuralidhara V. Design and development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. DARU 2020;28:489- 506. doi: 10.1007/s40199-020-00352-x
Srivastava S, Mahor A, Singh G, Bansal K, Singh PP, Gupta R, et al. Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges. J Pharm Sci 2021;110:3702-14.
Moin A, Roohi NK, Rizvi SM, Ashraf SA, Siddiqui AJ, Patel M, et al. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv 2020;10:34869-84.
Kassem MA, Abdallah FI, Elsherif YA. Design, evaluation and bioavailability of oxybutynin chloride nanosponges on healthy human volunteers. J Drug Deliv Sci Technol 2020;60:101943.
Harsha G, Shaik NB, Lakshmi PK, Latha K. Formulation and evaluation of sertaconazole nitrate loaded nanosponges for topical application. Res J Pharm Technol 2021;14:895-902.
Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A, et al. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J 2021;29:467-77.
Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Res Educ 2011;45:25-31.
Rao MR, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 2012;77:135-45.
Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. Int J Nanomedicine 2015;10:893-902. doi: 10.2147/IJN. S74771, PMID 25673986
Rao MR, Shirsath C. Enhancement of bioavailability of non-nucleoside reverse transcriptase inhibitor using nanosponges. AAPS PharmSciTech 2016;18:1728-38.
Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, verma A. Nanosponges: A potential nanocarrier for novel drug delivery-a review. Asian Pac J Trop Dis 2014;4:S519-26. doi: 10.1016/S2222- 1808(14)60667-8
Potdar S, Ingale V, Kulkarni N, Munde M, Dhole S. Insight on development and evaluation of nanosponge drug delivery for improved therapeutic effectiveness. Asian J Pharm Technol 2022;12:129-5.
Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater Sci Eng C Mater Biol Appl 2020;119:111605.
Banjare N, Gautam L, Behera C, Gupta PN, Vyas S, Vyas SP. Cyclodextrin nanosponges based site-retentive controlled release system for treatment of rheumatic arthritis. J Drug Deliv Sci Technol 2020;60:101973.
Dhakar NK, Caldera F, Bessone F, Cecone C, Pedrazzo AR, Cavalli R, et al. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr Polym 2019;224:115168.
Hayiyana Z, Choonara YE, Makgotloe A, Du Toit LC, Kumar P, Pillay V. Ester-based hydrophilic cyclodextrin nanosponges for topical ocular drug delivery. Curr Pharm Des 2016;22:6988-97. doi: 10.2174/1 381612822666161216113207, PMID 27981908
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013;63:335-58. doi: 10.2478/acph-2013-0021, PMID 24152895
Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010;402:254-7. doi: 10.1016/j.ijpharm.2010.09.025, PMID 20888402
Prabhu PP, Prathvi, Gujaran TV, Mehta CH, Suresh A, Koteshwara KB, et al. Development of lapatinib nanosponges for enhancing bioavailability. J Drug Deliv Sci Technol 2021;65:102684.
Ghose A, Nabi B, Rehman S, Md S, Alhakamy NA, Ahmad OA, et al. Development and evaluation of polymeric nanosponge hydrogel for terbinafine hydrochloride: Statistical optimization, in vitro and in vivo studies. Polymers (Basel) 2020;12:2903. doi: 10.3390/polym12122903, PMID 33287406
Bachir YN, Bachir RN, Hadj-Ziane-Zafour A. Nanodispersions stabilized by β-cyclodextrin nanosponges: Application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev Ind Pharm 2018;45:333-47.
Cheel J, Theoduloz C, Rodríguez J, Schmeda-Hirschmann G. Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (dc.) Stapf.). J Agric Food Chem 2005;53:2511-7. doi: 10.1021/ jf0479766, PMID 15796587
Nur Ain AH, Diyana MH, Zaibunnisa AH. Encapsulation Lemongrass (Cymbopogon citratus) Oleoresin with β-Cyclodextrin: Phase Solubility Study and Its Characterization. In: Proceedings of the 2nd International Conference on Biotechnology and Food Science. Vol. 7. Bali Island, Indonesia. Singapore: LACSIT Press; 2011. p. 44-8.
Shaikh AN, Pawar AY. Formulation and evaluation nanosponges loaded hydrogel of luliconazole. Int J Sci Dev Res 2020;5:2455-631.
Khanna D, Bharti S. Luliconazole for the treatment of fungal infections: An evidence-based review. Core Evid 2014;9:113-24. doi: 10.2147/ CE.S49629, PMID 25285056
Iriventi P, Gupta NV. Development and evaluation of nanosponge loaded topical herbal gel of Wrightia tinctoria. Int J Appl Pharm 2020;12:89-95. doi: 10.22159/ijap.2020v12i1.31198
Srivastava RS. A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: Adulterant of Kurchi. Pharmacogn Rev 2014;8:36-44. doi: 10.4103/0973-7847.125528, PMID 24600194
Khyade MS, Vaikos NP, Malpani DJ. Wrightia tinctoria R. Br. A review on its ethnobotany, pharmacognosy and pharmacological profile. J Coast Life Med 2014;2:826-40.
Selvakumar S, Singh SK. Preliminary phytochemical screening of Wrightia tinctoria. Res J Pharm Biol Chem Sci 2016;7:8-11.
Mane PK, Alookar NH. Development, characterization and evaluation of nanosponge gel containing flurbiprofen as a non-steroidal anti-inflammatory drug. Pharm Reson 2021;3:80-92.
Rao KM, Gnanaprakash K, Badarinath AV, Madhusudhana C, Muthumanickam A. Preparation and evaluation of flurbiprofen gel; mucilage of Cocculus hirsutus leaf powder as gel base. Int J PharmTech Res 2010;2:1578-83.
Narender BR, Rao PR. Formulation and evaluation of anticancer drug (doxorubicin) loaded nanosponges. Indo Am J Pharm Res 2019;9:572-83.
Francis DJ, Yusuf FS. Development and evaluation of nanosponges loaded extended-release tablets of lansoprazole. Univers J Pharm Res 2019;4:24-8.
Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, et al. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat Commun 2015;6:7659.
Mohamme BS, Al-Gawhari FJ. Preparation of posaconazole nanosponges for improved topical delivery system. Int J Drug Deliv Technol 2022;12:8-14.
Hens B, Brouwers J, Corsetti M, Augustijns P. Supersaturation and precipitation of posaconazole upon entry in the upper small intestine in humans. J Pharm Sci 2016;105:2677-84.
Tang P, Wang L, Ma X, Xu K, Xiong X, Liao X, et al. Characterization and in vitro evaluation of the complexes of posaconazole with β-and 2,6-di-o-methyl-β-cyclodextrin. AAPS PharmSciTech 2017;18:104-14. doi: 10.1208/s12249-016-0497-z, PMID 26883260
Shawky SM, Khalifa MK, Eassa HA. Lornoxicam-loaded nanosponges for controlled anti-inflammatory effect: In vitro/in vivo assessment. Int J Appl Pharm 2020;12:217-23. doi: 10.22159/ijap.2020v12i6.39430
Al-Suwayeh SA, Taha EI, Al-Gahtani FM, Ahmed MO, Badran MM. Evaluation of skin permeation and analgesic activity effects of Carbopol lornoxicam topical gels containing penetration enhancer. Sci World J 2014;2014:127495.
Dasgupta S, Ghosh SK, Ray S, Kaurav SS, Mazumder B. In vitro and in vivo studies on lornoxicam loaded nanoemulsion gels for topical application. Curr Drug Deliv 2014;11:132-8. doi: 10.2174/15672018113106660063, PMID 24266509
Jadhao UT, Sayali RP, Gunesh DN, Shital SD, Sneha LS. Formulation and evaluation of Nanosponge gel containing ketoconazole. Innov Pharm Pharmacother 2021;9:15-24.
Chakote VR, Jadhao UT, Waghmare RS, Wagh DR. Formulation and evaluation of ketoconazole nanosponge gel. J Univ Shanghai Sci Technol 2021;23:1-20. doi: 10.51201/Jusst12645
Najmuddin M, Mohsin AA, Khan T, Patel V, Shelar S. Formulation and evaluation of solid dispersion incorporated gel of ketoconazole. Res J Pharm Biol Chem Sci 2010;1:406.
Brunda S, Kulkarni SV, Manjunath K, Pushpalatha D. Formulation and evaluation of oxiconazole nitrate loaded nanosponges. World J Adv Res Rev 2021;11:28-40. doi: 10.30574/wjarr.2021.11.3.0405
Mahmoud RA, Hussein AK, Nasef GA, Mansour HF. Oxiconazole nitrate solid lipid nanoparticles: Formulation, in-vitro characterization and clinical assessment of an analogous loaded Carbopol gel. Drug Dev Ind Pharm 2020;46:706-16. doi: 10.1080/03639045.2020.1752707, PMID 32266837
Pillai MK, Jain P, Pillai S. Fabrication and evaluation of nanosponges of Besifloxacin hydrochloride for ocular drug delivery. J Med Pharm Allied Sci 2022;11:4657-60. doi: 10.55522/jmpas.V11I2.2586
Ravi G, Bose PS, Ravi V, Sarita D. Preparation, characterization and evaluation of celecoxib loaded nanosponges for the treatment of psoriatic arthritis. Int J Med Biomed Stud 2019;3:181-7.
Carter NJ, Scott LJ. Besifloxacin ophthalmic suspension 0.6%. Drugs 2010;70:83-97. doi: 10.2165/11203820-000000000-00000, PMID 20030427
Ansari KA, Vavia PR, Trotta FT, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011;12:279-86. doi: 10.1208/s12249-011-9584-3, PMID 21240574
Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM, de la Torre-Boronat MC. Piceid, the major resveratrol derivative in grape juices. J Agric Food Chem 1999;47:1533-6. doi: 10.1021/jf981024g, PMID 10564012
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218-20.
Granzotto A, Zatta P. Resveratrol and Alzheimer’s disease: Message in a bottle on red wine and cognition. Front Aging Neurosci 2014;6:95.
doi: 10.3389/fnagi.2014.00095, PMID 24860502
Lucas-Abellan C, Fortea I, Lopez-Nicolas JM, Nunez-Delicado E. Cyclodextrins as resveratrol carrier system. Food Chem 2007;107:39-44.
Abass MM, Rajab NA. Preparation and characterization of etodolac as a topical nanosponges hydrogel. Iraqi J Pharm Sci 2019;28:64-74. doi: 10.31351/vol28iss1pp64-74
Salah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: Ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv 2017;24:846-56. doi: 10.1080/10717544.2017.1326539, PMID 28535740
Srinivas P, Sreeja K. Formulation and evaluation of voriconazole loaded nanosponges for oral and topical delivery. Int J Drug Dev Res 2013;5:55-69.
Sabo JA, Abdel-Rahman SM. Voriconazole: A new triazole antifungal. Ann Pharmacother 2000;34:1032-43. doi: 10.1345/aph.19237, PMID 10981251
Kaur M, Nagpal M, Singh M, Singh TG, Aggarwal G, Dhingra GA. Improved antibacterial activity of topical gel-based on nanosponge carrier of cinnamon oil. Bioimpacts 2021;11:23-31. doi: 10.34172/ bi.2021.04, PMID 33469505
Cui H, Li W, Li C, Vittayapadung S, Lin L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016;32:215-25. doi: 10.1080/08927014.2015.1134516, PMID 26838161
Anitha P, Ramesh B. Development of cyclodextrin based nanosponge loaded tazoretene gel: Characterization and in vivo evaluation. Natl Volatiles Essent Oils 2022;9:1420-33.
Naik ER, Reddy BP, Saibaba SV. Design and characterisation of tenoxicam loaded nanosponges. Int J Trend Innov Res (IJTIIR) 2022;4:14-21.
Gawali CH, Junagade MS. Formulation and evaluation of nanosponges loaded hydrogel of tizanidine hydrochloride. World J Pharm Res 2019;8:559-74.
Katti SA, Suryavanshi SB, Bhirud RR. Formulation and development of transdermal patch of tizanidine hydrochloride. Asian J Res Chem Pharm Sci 2017;5:69-75.
Pushpalatha D, Khan AW, Manjunath K, Brunda S. Formulation and evaluation of lovastatin loaded nanosponges. World J Adv Res Rev 2021;11:41-56. doi: 10.30574/wjarr.2021.11.3.0404
Mannur VS, Majik KK, Mastiholimath VS, Furtado DA. Formulation and comparative studies of lovastatin loaded polymeric nanoparticles prepared by ionic gelation and solvent evaporation technique. Int J Pharm Sci Res 2015;6:4796-803.
Narender BR, Sridhar PR. Formulation and evaluation of anticancer drug (tamoxifen) loaded nanosponges. Am J Pharm Health Res 2019;7:39-57. doi: 10.46624/ajphr.2019.v7.i12.003
Salman AH, Al-Gawhari FJ, Al-Kinani KK. The effect of formulation and process variables on prepared etoricoxib nanosponges. J Adv Pharm Educ Res 2021;11:82-7. doi: 10.51847/Q0QRKUV2kQ
Abdul-Rahman MM, Jawad FJ. Enhancement of aqueous solubility and dissolution rate of etoricoxib by solid dispersion technique. Iraqi J Pharm Sci 2020;29:76-87.
Tjandrawinata RR, Setiawati A, Nofiarny D, Susanto LW, Setiawati E. Pharmacokinetic equivalence study of nonsteroidal anti-inflammatory drug etoricoxib. Clin Pharmacol 2018;10:43-51. doi: 10.2147/CPAA. S161024, PMID 29670410
Raytthatha N, Shah I, Patel J, Vyas J, Upadhyay U. Development of benzoyl peroxide loaded nanosponges gel. Natl J Pharm Sci 2021;1:25-9.
Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int J Pharm 2006;308:124-32. doi: 10.1016/j.ijpharm.2005.11.001, PMID 16359833
Satpathy TK, Chaubey N, Brahma CK, Maheshwari M. Formulation and evaluation of lamotrigine loaded nanosponges. Res J Pharm Technol 2022;15:229-35.
Solunke RS, Borge UR, Murthy K, Deshmukh MT, Shete RV. Formulation and evaluation of gliclazide nanosponges. Int J Appl Pharm 2019;11:181-9. doi: 10.22159/ijap.2019v11i6.35006
Biswal S, Sahoo J, Murthy PN. Characterization of gliclazide-peg 8000 solid dispersions. Trop J Pharm Res 2009;8:417-24.
Varma MM, Kumar PS. Formulation and evaluation of gliclazide tablets containing pvp-k30 and hydroxypropyl-β-cyclodextrin solid dispersion. Int J Pharm Sci Nanotech 2012;5:1706-19.
Asad M, Bashir S, Mahmood T, Nazir I, Imran M, Karim S, et al. Fabrication and characterization of gliclazide loaded microcapsules. Braz Arch Biol Technol 2014;57:874-81. doi: 10.1590/S1516- 8913201402505
Srilakshmi V, Saibabu C, Thejomoorthy K, Prasanna PS. Formulation development and evaluation of DASTINIB nanosponges. World J Pharm Res 2020;9:1933-52.
Vaidhyanathan S, Wang X, Crison J, Varia S, Gao JZ, Saxena A, et al. Bioequivalence comparison of pediatric dasatinib formulations and elucidation of absorption mechanisms through integrated PBPK modeling. J Pharm Sci 2019;108:741-9. doi: 10.1016/j. xphs.2018.11.005, PMID 30439460
Published
How to Cite
Issue
Section
Copyright (c) 2023 shruti burad, Karishma U. Markad, Dr.Nilesh S. Kulkarni, Dr.Shashikant Dhole
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.