COMPARITIVE STUDY OF DENDRITIC CELL VACCINE PREPARATION WITH PRESENCE AND ABSENCE OF MALPIGHIA EMARGINATA FRUIT EXTRACT USING TUMOR RNA TRANSFECTION METHOD: A PROMISING APPROACH FOR PROSTATE CANCER

Authors

  • KOTEESWARAN K Department of Pharmacology, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi, Virudhunagar, Tamil Nadu, India.
  • NATARAJAN P Department of Pharmacology, Sankaralingam Bhuvaneswari College of Pharmacy, Sivakasi, Virudhunagar, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2023.v16i7.47374

Keywords:

Malpighia emarginata DC, Dendritic cells, Cancer immunotherapy, Tumor cells, RNA transfection method

Abstract

Acerola (Malpighia emarginata DC) is the richest natural source of ascorbic acid and also contains a plethora of phytonutrients such as flavonoids, anthocyanins, carotenoids, and phenolics. By using the fruits of Malpighia emarginata, are used for the treatment of cancer by inducing effective anti-tumor immunity through dendritic cells. Dendritic cells (DC) are the heterogeneous population of antigen-presenting cells that invade tumors. They play an important role in the priming and maintenance of local immunity, and their major function is diminished by some factors encountered in the local environment. For the success of cancer immunotherapy, adequate tumor-specific antigens play a very important role in inducing a tumor-specific immune response by effective delivery of these antigens. In this proposal, by using these strategies, mature and immature dendritic cells were obtained in-vitro by adding specific cytokines to monocyte cell culture containing Malpighia emarginata fruit extract in the presence of prostate-specific antigen (PSA), and their results were compared to those obtained without the presence of Malpighia emarginata fruit extract. In the prostate tumor lineage, the RNA is extracted into the cell by electroporation, and the transfection success was measured by immunocytochemistry of the PSA expression level in dendritic cells. For the comparative study of in-vitro RNA transcription, this method allows small tumors to be used for dendritic cell vaccine preparation through the activation of DC by in the presence and absence of Malpighia emarginata fruit extract and it is a promising approach for the treatment of metastatic prostate cancer.

Downloads

Download data is not yet available.

References

Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010;19:1893-907.

Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019;9:217-22. doi: 10.2991/jegh.k.191008.001, PMID: 31854162; PMCID: PMC7310786

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.

Testa U, Castelli G, Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines (Basel) 2019;6:82. doi: 10.3390/medicines6030082, PMID: 31366128; PMCID: PMC6789661

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA cancer J Clin 2021;71:209-49.

Delva L, Schneider RG. Acerola (Malpighia emarginata DC): Production, postharvest handling, nutrition, and biological activity. Food Rev Int 2013;29:107-26.

Mezadri T, Villaño D, Fernández-Pachón MS, García-Parrilla MC, Troncoso AM. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J Food Compost Anal 2008;21:282-90.

Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811. doi: 10.1146/annurev.immunol.18.1.767, PMID: 10837075

Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419-26.

Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997;18:175-82.

Wang RF. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol 2001;22:269-76. doi: 10.1016/s1471-4906(01)01896-8, PMID: 11323286

Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001;106:271-4.

Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, et al. In vivo analysis of dendritic cell development and homeostasis. Science 2009;324:392-7.

Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 2007;8:1217-26.

Swiecki M, Colonna M. Accumulation of plasmacytoid DC: Roles in disease pathogenesis and targets for immunotherapy. Eur J Immunol 2010;40:2094-8.

Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015;15:471-85.

Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J Dermatol Sci 2016;83:3-9.

Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol 2018;84:11-21. doi: 10.1016/j.semcdb.2017.12.009, PMID: 29246859

Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Teh JS, Lo JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 2008;112:3264-73.

Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008;118:2098-110.

Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010;207:1273-81.

Crozat K, Tamoutounour S, Manh TP, Fossum E, Luche H, Ardouin L, et al. Cutting edge: Expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J Immunol 2011;187:4411-5.

Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseño CG, Iwata A, et al. Transcriptional control of dendritic cell development. Annu Rev Immunol 2016;34:93-119. doi: 10.1146/annurev-immunol-032713-120204, PMID: 26735697; PMCID: PMC5135011

Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J, et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 2016;213:897-911.

Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017;356:eaah4573.

See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017;356:eaag3009. doi: 10.1126/ science.aag3009, PMID: 28473638; PMCID: PMC7611082

Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 2017;47:1037-50.

Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J Immunol 2001;166:5448-55.

Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995;1:1297-302.

Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000;6:1011-7.

Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52-8.

Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide-or tumorlysate-pulsed dendritic cells. Nat Med 1998;4:328-32.

Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999;190:1669-78.

Wierecky J, Müller MR, Wirths S, Halder-Oehler E, Dörfel D, Schmidt SM, et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006;66:5910-8.

Jähnisch H, Füssel S, Kiessling A, Wehner R, Zastrow S, Bachmann M, et al. Dendritic cell-based immunotherapy for prostate cancer. Clin Dev Immunol 2010;2010:517493.

Unal A, Birekul A, Unal MC, Karakus E, Köker Y, Ozkul Y, et al. Dendritic cell production from allogeneic donor CD34+ stem cells and mononuclear cells; cancer vaccine. Blood 2016;128:5723.

Plantinga M, de Haar CG, Dünnebach E, van den Beemt DA, Bloemenkamp KW, Mokry M, et al. Cord-blood-stem-cell-derived conventional dendritic cells specifically originate from CD115- expressing precursors. Cancers (Basel) 2019;11:181.

Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994;180:83-93.

Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony-stimulating factor plus interleukin 4 and down regulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-18. doi: 10.1084/jem.179.4.1109, PMID: 8145033; PMCID: PMC2191432

Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996;196:137-51. doi: 10.1016/0022-1759(96)00078-6, PMID: 8841452

Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci 1996;93:2588-92.

Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Front Immunol 2018;9:658.

Versteven M, Damoiseaux D, Campillo-Davo D, Acker HV, Reu HD, Anguille S, et al. Abstract B137: Preclinical evaluation of a Wilms’ tumor protein 1-targeted interleukin-15 dendritic cell vaccine: T-cell activity and batch production. Cancer Immunol Res 2019;7(2_Supplement):B137.

Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-α skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol 2003;171:3385-93.

Shinde P, Melinkeri S, Santra MK, Kale V, Limaye L. Autologous hematopoietic stem cells are a preferred source to generate dendritic cells for immunotherapy in multiple myeloma patients. Front Immunol 2019;10:1079.

Bernhard H, Disis ML, Heimfeld S, Hand S, Gralow JR, Cheever MA. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res 1995;55:1099-104.

Bontkes HJ, De Gruijl TD, Schuurhuis GJ, Scheper RJ, Meijer CJ, Hooijberg E. Expansion of dendritic cell precursors from human CD34+ progenitor cells isolated from healthy donor blood; growth factor combination determines proliferation rate and functional outcome. J Leukoc Biol 2002;72:321-9.

Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep 2018;23:3658-72.e6. doi: 10.1016/j.celrep.2018.05.068, PMID: 29925006; PMCID: PMC6063084

Zehn D, Cohen CJ, Reiter Y, Walden P. Extended presentation of specific MHC-peptide complexes by mature dendritic cells compared to other types of antigen-presenting cells. Eur J Immunol 2004;34:1551-60.

Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233-8.

Sozzani S. Dendritic cell trafficking: More than just chemokines. Cytokine Growth Factor Rev 2005;16:581-92.

Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 2006;176:5153-9.

Randolph GJ, Sanchez-Schmitz G, Angeli V. Factors and signals that govern the migration of dendritic cells via lymphatics: Recent advances. Springer Semin Immunopathol 2005;26:273-87.

Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004;21:279-88.

Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I, Wolf E, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999;99:23-33. doi: 10.1016/s0092-8674(00)80059-8, PMID: 10520991

De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003;63:12-7.

Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AC, Kok E, van Rossum MM, et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 2009;15:2531-40. doi: 10.1158/1078-0432.CCR-08-2729, PMID: 19318472

Martín-Fontecha A, Sebastiani S, Höpken UE, Uguccioni M, Lipp M, Lanzavecchia A, et al. Regulation of dendritic cell migration to the draining lymph node: Impact on T lymphocyte traffic and priming. J Exp Med 2003;198:615-21.

Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, et al. Dendritic cell-based immunotherapy of acute myeloid leukemia. J Clin Med 2019;8:579.

Steger B, Floro L, Amberger DC, Kroell T, Tischer J, Kolb HJ, et al. WT1, PRAME, and PR3 mRNA expression in acute myeloid leukemia (AML). J Immunother 2020;43:204-15.

Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017;27:74-95.

Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013;4:496.

Anguille S, Willemen Y, Lion E, Smits EL, Berneman ZN. Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy 2012;14:647-56.

Usero L, Miralles L, Esteban I, Pastor-Quiñones C, Maleno MJ, Leal L, et al. Feasibility of using monocyte-derived dendritic cells obtained from cryopreserved cells for DC-based vaccines. J Immunol Methods 2021;498:113133.

Amberger DC, Doraneh-Gard F, Gunsilius C, Weinmann M, Möbius S, Kugler C, et al. PGE1-containing protocols generate mature (leukemia-derived) dendritic cells directly from leukemic whole blood. Int J Mol Sci 2019;20:4590.

Lopez AH, Deen D, Fischer Z, Rabe A, Ansprenger C, Stein K, et al. Role of interferon (IFN) α in “Cocktails” for the generation of (Leukemia-derived) dendritic cells (DCleu) from blasts in blood from patients (pts) with acute myeloid leukemia (AML) and the induction of antileukemic reactions. J Immunother 2019;42:143-61.

Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Yaghmaie M, et al. In vitro induction of potent tumor-specific cytotoxic T lymphocytes using TLR agonist-activated AML-DC. Target Oncol 2014;9:225-37.

Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomed Pharmacother 2007;61:306-14. doi: 10.1016/j.biopha.2007.01.005, PMID: 17368821

Amberger DC, Schmetzer HM. Dendritic cells of leukemic origin: Specialized antigen-presenting cells as potential treatment tools for patients with myeloid leukemia. Transfus Med Hemother 2020;47:432-43. doi: 10.1159/000512452, PMID: 33442338; PMCID: PMC7768130

Kremser A, Kufner S, Konhaeuser E, Kroell T, Hausmann A, Tischer J, et al. Combined immunophenotyping and fluorescence in situ hybridization with chromosome-specific DNA probes allows quantification and differentiation of ex vivo generated dendritic cells, leukemia-derived dendritic cells and clonal leukemic cells in patients with acute myeloid leukemia. Leuk Lymphoma 2013;54:1297-308.

Schmetzer HM, Kremser A, Loibl J, Kroell T, Kolb HJ. Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 2007;21:1338-41.

Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv Immunol 2013;120:51-68.

Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DN, et al. CD83: Activation marker for antigen presenting cells and its therapeutic potential. Front Immunol 2019;10:1312.

Pan RY, Chung WH, Chu MT, Chen SJ, Chen HC, Zheng L, et al. Recent development and clinical application of cancer vaccine: Targeting neoantigens. J Immunol Res 2018;2018:4325874.

Sutherland SI, Ju X, Horvath LG, Clark GJ. Moving on from sipuleucel-T: New dendritic cell vaccine strategies for prostate cancer. Front Immunol 2021;12:641307.

Sonpavde G, McMannis JD, Bai Y, Seethammagari MR, Bull J, Hawkins V, et al. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunol Immunother 2017;66:1345-57.

Tesfatsion DA. Dendritic cell vaccine against leukemia: Advances and perspectives. Immunotherapy 2014;6:485-96.

Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol 2017;38:577-93.

Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev 2015;67:731-53.

Wimmers F, Schreibelt G, Sköld AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: From in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 2014;5:165.

Schuurhuis DH, Verdijk P, Schreibelt G, Aarntzen EH, Scharenborg N, de Boer A, et al. In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 2009;69:2927-34.

Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 2003;21:3826-35.

Dohnal AM, Witt V, Hügel H, Holter W, Gadner H, Felzmann T. Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 2007;9:755-70.

Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 2001;166:4254-9.

West E, Morgan R, Scott K, Merrick A, Lubenko A, Pawson D, et al. Clinical grade OK432-activated dendritic cells: In vitro characterization and tracking during intralymphatic delivery. J Immunother 2009;32:66-78.

Rodríguez-Ruiz ME, Perez-Gracia JL, Rodríguez I, Alfaro C, Oñate C, Pérez G, et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol 2018;29:1312-9. doi: 10.1093/annonc/ mdy089, PMID: 29554212

Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999;5:1331-8.

Barratt-Boyes SM, Watkins SC, Finn OJ. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv Exp Med Biol 1997;417:71-5.

Schmitt A, Hus I, Schmitt M. Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther 2007;7:275-83.

Gilliet M, Kleinhans M, Lantelme E, Schadendorf D, Burg G, Nestle FO. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper Type 1 responses to protein neoantigen. Blood 2003;102:36-42.

Roddie H, Klammer M, Thomas C, Thomson R, Atkinson A, Sproul A, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol 2006;133:152-7.

Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: Past progress and future directions. Vaccine 2020;38:3811-20.

Zhao W, Zhao G, Wang B. Revisiting GM-CSF as an adjuvant for therapeutic vaccines. Cell Mol Immunol 2018;15:187-9.

Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 2016;23:962-78.

O’Brien LJ, Guillerey C, Radford KJ. Can dendritic cell vaccination prevent leukemia relapse? Cancers (Basel) 2019;11:875.

Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K, et al. A phase I/IIa clinical trial of immunotherapy for elderly patients with acute myeloid leukaemia using dendritic cells co-pulsed with WT1 peptide and zoledronate. Br J Haematol 2011;153:796-9.

van Beek JJ, Gorris MA, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology 2016;5:e1227902.

Van Acker HH, Beretta O, Anguille S, De Caluwé L, Papagna A, Van den Bergh JM, et al. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget 2017;8:13652-65.

Van Ee TJ, Van Acker HH, Van Oorschot TG, Van Tendeloo VF, Smits EL, Bakdash G, et al. BDCA1+ CD14+ immunosuppressive cells in cancer, a potential target? Vaccines (Basel) 2018;6:65.

Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D, et al. Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica 2010;95:2022-30.

Published

07-07-2023

How to Cite

K, K., and N. P. “COMPARITIVE STUDY OF DENDRITIC CELL VACCINE PREPARATION WITH PRESENCE AND ABSENCE OF MALPIGHIA EMARGINATA FRUIT EXTRACT USING TUMOR RNA TRANSFECTION METHOD: A PROMISING APPROACH FOR PROSTATE CANCER”. Asian Journal of Pharmaceutical and Clinical Research, vol. 16, no. 7, July 2023, pp. 1-6, doi:10.22159/ajpcr.2023.v16i7.47374.

Issue

Section

Review Article(s)