AMELIORATION IN APPROACHES FOR ENHANCED PULMONARY DRUG DELIVERY
DOI:
https://doi.org/10.22159/ajpcr.2023.v16i10.48081Keywords:
Advanced approaches, Devices, Drawbacks, Formulation, Inhalation, Pulmonary drug delivery systemAbstract
Pulmonary disorders including asthma, chronic obstructive pulmonary disorder (COPD), cystic fibrosis, and other severe conditions like cancer have indeed made pulmonary drug delivery systems, both, an area of interest as well as concern. The mortality rate, around 8%, has enabled researchers to develop novel technologies for efficient drug delivery and reduced side effects. As the drug delivery through inhalation involves two major influencing factors, that is, formulation type and the device used for inhalation, various strategies have been designed with an intent to upgrade the existing drug formulations and devices used. Apart from this, various targeting strategies including gene therapy and magnetic targeting so as to improve the target specificity of the administered drug in the regions of the pulmonary system have been developed. In spite of these advancements, pulmonary drug delivery appears to be challenging in terms of formulation design and animal model design as well as lack of availability of FDA-approved excipients for inhalation. Persistent efforts have been made by the researchers in combining various strategies to negate the drawbacks/limitations of pulmonary drug delivery so as to develop a drug delivery system with improved efficacy and negligible adverse effects.
Downloads
References
Kaur SS. Pulmonary drug delivery system: Newer patents. Pharm Pat Anal 2017;6:225-44. doi: 10.4155/ppa-2017-0019, PMID 28818001
Patil JS, Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India 2012;29:44-9. doi: 10.4103/0970- 2113.92361, PMID 22345913
Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A. Fundamentals of pulmonary drug delivery. Respir Med 2003;97:382-7. doi: 10.1053/ rmed.2002.1457, PMID 12693798
Newman SP. Drug delivery to the lungs: Challenges and opportunities. Ther Deliv 2017;8:647-61. doi: 10.4155/tde-2017-0037, PMID 28730933
Nikander K. Challenges and opportunities in respiratory drug delivery devices. Expert Opin Drug Deliv 2010;7:1235-8. doi: 10.1517/17425247.2010.525231, PMID 20939686
Nanjwade BK, Adichwal SA, Gaikwad KR, Parikh KA, Manvi FV. Pulmonary drug delivery: Novel pharmaceutical technologies breathe new life into the lungs. PDA J Pharm Sci Technol 2011;65:513-34. doi: 10.5731/pdajpst.2011.00704, PMID 22293840
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022;20:101. doi: 10.1186/s12951-022-01307-x, PMID 35241085
Newman S. Improving inhaler technique, adherence to therapy and the precision of dosing: major challenges for pulmonary drug delivery. Expert Opin Drug Deliv 2014;11:365-78. doi: 10.1517/17425247.2014.873402, PMID 24386924
Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015;20:380-9. doi: 10.1016/j. drudis.2014.09.020, PMID 25281854
Siekmeier R, Scheuch G. Treatment of systemic diseases by inhalation of biomolecule aerosols. J Physiol Pharmacol 2009;60(Suppl 5):15-26. PMID 20134033
Thakkar M, Brijesh S. Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv 2016;13:1275-89. doi: 10.2174 /1567201813666160328113522, PMID 27017826
Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 2006;58:996-1008. doi: 10.1016/j.addr.2006.07.009, PMID 16996638
Siekmeier R, Scheuch G. Systemic treatment by inhalation of macromolecules-principles, problems, and examples. J Physiol Pharmacol 2008;59(Suppl 6):53-79. PMID 19218633
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, et al. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021;164:1-12. doi: 10.1016/j.ejpb.2021.03.017, PMID 33882301
Rau JL. The inhalation of drugs: Advantages and problems. Respir Care 2005;50:367-82. PMID 15737247
Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to overcome biological barriers associated with pulmonary drug delivery. Pharmaceutics 2022;14:302. doi: 10.3390/pharmaceutics14020302, PMID 35214039
Klingler C, Müller BW, Steckel H. Insulin-micro-and nanoparticles for pulmonary delivery. Int J Pharm 2009;377:173-9. doi: 10.1016/j. ijpharm.2009.05.008, PMID 19446621
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022;352:970-93. doi: 10.1016/j. jconrel.2022.10.061, PMID 36372386
Ho DK, Nichols BL, Edgar KJ, Murgia X, Loretz B, Lehr CM. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur J Pharm Biopharm 2019;144:110-24. doi: 10.1016/j.ejpb.2019.09.002, PMID 31493510
De Souza Carvalho C, Daum N, Lehr CM. Carrier interactions with the biological barriers of the lung: Advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev 2014;75:129-40. doi: 10.1016/j.addr.2014.05.014, PMID 24880145
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: From generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med 2013;1:402-13. doi: 10.1016/S2213-2600(13)70072-9, PMID 24429205
Antimisiaris SG, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021;174:53-86. doi: 10.1016/j. addr.2021.01.019, PMID 33539852
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014;75:81-91. doi: 10.1016/j.addr.2014.05.017, PMID 24915637
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, et al. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm 2021;18:3671-718. doi: 10.1021/acs.molpharmaceut.1c00491, PMID 34491754
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020;25:150-9. doi: 10.1016/j.drudis.2019.09.023, PMID 31600580
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021;177:113953. doi: 10.1016/j.addr.2021.113953, PMID 34474094
Elhissi A. Liposomes for pulmonary drug delivery: The role of formulation and inhalation device design. Curr Pharm Des 2017;23:362-72. doi: 10.2174/1381612823666161116114732, PMID 27848886
Sun L, Fan M, Huang D, Li B, Xu R, Gao F, et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials 2021;271:120761. doi: 10.1016/j.biomaterials.2021.120761, PMID 33774524
Weers J, Tarara T. The pulmospheretm platform for pulmonary drug delivery. Ther Deliv 2014;5:277-95. doi: 10.4155/tde.14.3, PMID 24592954
Athamneh T, Amin A, Benke E, Ambrus R, Gurikov P, Smirnova I, et al. Pulmonary drug delivery with aerogels: Engineering of alginate and alginate-hyaluronic acid microspheres. Pharm Dev Technol 2021;26:509-21. doi: 10.1080/10837450.2021.1888979, PMID 33593203
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv 2021;28:1397-418. doi: 10.1080/10717544.2021.1938756, PMID 34184949
Arora D, Khurana B, Rath G, Nanda S, Goyal AK. Recent advances in nanosuspension technology for drug delivery. Curr Pharm Des 2018;24:2403-15. doi: 10.2174/1381612824666180522100251, PMID 29788880
Ishak RA, Osman R. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity. Int J Pharm 2015;485:249-60. doi: 10.1016/j. ijpharm.2015.03.019, PMID 25772421
D’Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014;75:92-111. doi: 10.1016/j.addr.2014.05.008, PMID 24842473
Home, ClinicalTrials.gov. Available from: https://www.clinicaltrials. gov [Last accessed on 2022 Apr 28].
Daley CL, Winthrop KL. Mycobacterium avium complex: Addressing gaps in diagnosis and management. J Infect Dis 2020;222(Suppl 4):S199-211. doi: 10.1093/infdis/jiaa354, PMID 32814943
Sharma SK, Upadhyay V. Epidemiology, diagnosis and treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 2020;152:185-226. doi: 10.4103/ijmr.IJMR_902_20, PMID 33107481
MacLoughlin R, Telfer C, Clark A, Fink J. Aerosol: A novel vehicle for pharmacotherapy in neonates. Curr Pharm Des 2017;23:5928-34. doi: 10.2174/1381612823666170918122136, PMID 28925894
Sanders M, Bruin R. A rationale for going back to the future: Use of disposable spacers for pressurised metered dose inhalers. Pulm Med 2015;2015:176194. doi: 10.1155/2015/176194, PMID 26491563
Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir Care 2005;50:1161-76. PMID 16122400
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: Emerging need to transform lung-targeted delivery. Heliyon 2022;8:e12620. doi: 10.1016/j.heliyon.2022.e12620, PMID 36619445
Ram FS, Brocklebank DM, White J, Wright JP, Jones PW, Lasserson TJ. Pressurised metered dose inhalers versus all other hand-held inhaler devices to deliver beta-2 agonist bronchodilators for non-acute asthma. Cochrane Database Syst Rev 2002;2002:CD002158. doi: 10.1002/14651858.CD002158, PMID 11869625
Ooi J, Traini D, Boyd BJ, Gaisford S, Young PM. Determination of physical and chemical stability in pressurised metered dose inhalers: Potential new techniques. Expert Opin Drug Deliv 2015;12:1661-75. doi: 10.1517/17425247.2015.1046834, PMID 26067386
Cooney D, Kazantseva M, Hickey AJ. Development of a size-dependent aerosol deposition model utilising human airway epithelial cells for evaluating aerosol drug delivery. Altern Lab Anim 2004;32:581-90. doi: 10.1177/026119290403200609, PMID 15757496
Mortensen NP, Hickey AJ. Targeting inhaled therapy beyond the lungs. Respiration 2014;88:353-4. doi: 10.1159/000367852, PMID 25277464
Noriega-Fernandes B, Malmlöf M, Nowenwik M, Gerde P, Corvo ML, Costa E. Dry powder inhaler formulation comparison: Study of the role of particle deposition pattern and dissolution. Int J Pharm 2021;607:121025. doi: 10.1016/j.ijpharm.2021.121025, PMID 34418472
Liu X, Sulaiman M, Kolehmainen J, Ozel A, Sundaresan S. Particle-based coarse-grained approach for simulating dry powder inhaler. Int J Pharm 2021;606:120821. doi: 10.1016/j.ijpharm.2021.120821, PMID 34171427
Allan R, Canham K, Wallace R, Singh D, Ward J, Cooper A, et al. Usability and robustness of the WixelaInhub dry powder inhaler. J Aerosol Med Pulm Drug Deliv 2021;34:134-45. doi: 10.1089/ jamp.2020.1603, PMID 32865454
Son YJ, Miller DP, Weers JG. Optimizing spray-dried porous particles for high dose delivery with a portable dry powder inhaler. Pharmaceutics 2021;13:1528. doi: 10.3390/pharmaceutics13091528, PMID 34575603
Stein SW, Thiel CG. The history of therapeutic aerosols: A chronological review. J Aerosol Med Pulm Drug Deliv 2017;30:20-41. doi: 10.1089/ jamp.2016.1297, PMID 27748638
Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv 2015;12:889-900. doi: 10.1517/17425247.2015.995087, PMID 25534396
Sorino C, Negri S, Spanevello A, Visca D, Scichilone N. Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. Eur J Intern Med 2020;75:15-8. doi: 10.1016/j.ejim.2020.02.023, PMID 32113944
Sznitman J, Heimsch T, Wildhaber JH, Tsuda A, Rösgen T. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng 2009;131:031010. doi: 10.1115/1.3049481, PMID 19154069
Bos AC, Tiddens HA, Minh KT, Heeres I, Overweel-Uijterlinde JL, Kok AE, et al. Daily observations of nebuliser use and technique (DONUT) in children with cystic fibrosis. J Cyst Fibros 2016;15:645-51. doi: 10.1016/j.jcf.2016.03.005, PMID 27052127
Dubus JC, Becquemin MH, Vecellio L, Chaumuzeau JP, Reychler G, GAT (Groupe aérosolthérapie de la Société de pneumologie de langue française). Good practice for aerosol therapy by nebulization in 2020. Rev Mal Respir 2021;38:171-6. doi: 10.1016/j.rmr.2020.11.010, PMID 33288396
Eudaley ST, Dabbs WS, Chamberlin SM. YouTube as a guide for Respimat® soft MistTM inhaler technique. J Pharm Pract 2021;34:40-3. doi: 10.1177/0897190019853988, PMID 31232147
Iwanaga T, Tohda Y, Nakamura S, Suga Y. The Respimat® soft mist inhaler: Implications of drug delivery characteristics for patients. Clin Drug Investig 2019;39:1021-30. doi: 10.1007/s40261-019-00835-z, PMID 31377981
Kumbhare U, Yelne P, Tekale S. Therapeutic use of an inhaled drug delivery in pulmonary hypertension: A review. Cureus 2022;14:e30134. doi: 10.7759/cureus.30134, PMID 36381737
Perriello EA, Sobieraj DM. The respimat soft mist inhaler, a novel inhaled drug delivery device. Conn Med 2016;80:359-64. PMID 27509644
Keating GM. Tiotropium Respimat(®) soft mistTM inhaler: A review of its use in chronic obstructive pulmonary disease. Drugs 2014;74:1801-16. doi: 10.1007/s40265-014-0307-4, PMID 25300412
Chono S. Development of drug delivery systems for targeting to macrophages. Yakugaku Zasshi 2007;127:1419-30. doi: 10.1248/ yakushi.127.1419, PMID 17827922
Chono S, Tanino T, Seki T, Morimoto K. Pharmacokinetic and pharmacodynamic efficacy of intrapulmonary administration of ciprofloxacin for the treatment of respiratory infections. Drug Metab Pharmacokinet 2007;22:88-95. doi: 10.2133/dmpk.22.88, PMID 17495415
Rogliani P, Ritondo BL, Ora J, Cazzola M, Calzetta L. SMART and as-needed therapies in mild-to-severe asthma: A network meta-analysis. Eur Respir J 2020;56:2000625. doi: 10.1183/13993003.00625-2020, PMID 32430423
Zabczyk C, Blakey JD. The effect of connected “smart” inhalers on medication adherence. Front Med Technol 2021;3:657321. doi: 10.3389/fmedt.2021.657321, PMID 35047916
Lin J, Zhou X, Wang C, Liu C, Cai S, Huang M. Symbicort® maintenance and reliever therapy (SMART) and the evolution of asthma management within the GINA guidelines. Expert Rev Respir Med 2018;12:191-202. doi: 10.1080/17476348.2018.1429921, PMID 29400090
Singh A, Malviya R, Sharma K. Pulmonary drug delivery system: A novel approach for drug delivery. Curr Drug Ther 2011;6:137-51. doi: 10.2174/157488511795304930
Pritchard JN. The climate is changing for metered-dose inhalers and action is needed. Drug Des Dev Ther 2020;14:3043-55. doi: 10.2147/ DDDT.S262141, PMID 32801643
Fernandes SD, Koland M. Understanding the essentialities in establishing the bioequivalence of oral inhalation drug products to be marketed in the USA. Ther Innov Regul Sci 2020;54:738-48. doi: 10.1007/s43441-019-00007-3, PMID 32557296
Kuribayashi R, Yamaguchi T, Sako H, Takishita T, Takagi K. Bioequivalence evaluations of generic dry powder inhaler drug products: Similarities and differences between Japan, USA, and the European Union. Clin Pharmacokinet 2017;56:225-33. doi: 10.1007/ s40262-016-0438-8, PMID 27461251
Muralidharan P, Hayes D, Mansour HM. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin Drug Deliv 2015;12:947-62. doi: 10.1517/17425247.2015.977783, PMID 25388926
Barjaktarevic IZ, Milstone AP. Nebulized therapies in COPD: Past, present, and the future. Int J Chron Obstruct Pulm Dis 2020;15:1665-77. doi: 10.2147/COPD.S252435, PMID 32764912
Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother 2019;112:108601. doi: 10.1016/j. biopha.2019.108601, PMID 30780107
Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2008;127:50-8. doi: 10.1016/j.jconrel.2007.12.011, PMID 18230410
Morimoto K. Designs of optimized microbial therapy systems of respiratory infections. Yakugaku Zasshi 2013;133:81-92. doi: 10.1248/ yakushi.12-00256, PMID 23292024
Villate-Beitia I, Zarate J, Puras G, Pedraz JL. Gene delivery to the lungs: Pulmonary gene therapy for cystic fibrosis. Drug Dev Ind Pharm 2017;43:1071-81. doi: 10.1080/03639045.2017.1298122, PMID 28270008
Laube BL. Aerosolized medications for gene and peptide therapy. Respir Care 2015;60:806-21; discussion 821. doi: 10.4187/respcare.03554, PMID 26070576
Kim YD, Park TE, Singh B, Maharjan S, Cho KS, Park KP, et al. Image-guided nanoparticle-based siRNA delivery for cancer therapy. Curr Pharm Des 2015;21:4637-56. doi: 10.2174/13816128213115101 3192327, PMID 26486148
Goetz SM, Dahmani C, Rudolph C, Weyh T. First theoretic analysis of magnetic drug targeting in the lung. IEEE Trans Bio Med Eng 2010;57:2115-21. doi: 10.1109/TBME.2010.2051032, PMID 20515705
Dahmani C, Götz S, Weyh T, Renner R, Rosenecker M, Rudolph C. Respiration triggered magnetic drug targeting in the lungs. Annu Int Conf IEEE Eng Med Biol Soc 2009;2009:5440-3. doi: 10.1109/ IEMBS.2009.5332476, PMID 19963644
Price DN, Stromberg LR, Kunda NK, Muttil P. In vivo pulmonary delivery and magnetic-targeting of dry powder Nano-in-microparticles. Mol Pharm 2017;14:4741-50. doi: 10.1021/acs.molpharmaceut.7b00532, PMID 29068693
Manshadi MK, Saadat M, Mohammadi M, Kamali R, Shamsi M, Naseh M, et al. Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet. Drug Deliv 2019;26:120-8. doi: 10.1080/10717544.2018.1561765, PMID 30798633
Respaud R, Marchand D, Pelat T, Tchou-Wong KM, Roy CJ, Parent C, et al. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin. J Control Release 2016;234:21-32. doi: 10.1016/j. jconrel.2016.05.018, PMID 27173943
Torphy TJ, Li L, Griswold DE. Monoclonal antibodies as a strategy for pulmonary diseases. Curr Opin Pharmacol 2001;1:265-71. doi: 10.1016/s1471-4892(01)00047-9, PMID 11712750
Pelaia C, Crimi C, Vatrella A, Tinello C, Terracciano R, Pelaia G. Molecular targets for biological therapies of severe asthma. Front Immunol 2020;11:603312. doi: 10.3389/fimmu.2020.603312, PMID 33329598
Ku TJ, Ribeiro RV, Ferreira VH, Galasso M, Keshavjee S, Kumar D, et al. Ex-vivo delivery of monoclonal antibody (rituximab) to treat human donor lungs prior to transplantation. EBiomedicine 2020;60:102994. doi: 10.1016/j.ebiom.2020.102994, PMID 32950000
Mümmler C, Munker D, Barnikel M, Veit T, Kayser MZ, Welte T, et al. Dupilumab improves asthma control and lung function in patients with insufficient outcome during previous antibody therapy. J Allergy Clin Immunol Pract 2021;9:1177-85.e4. doi: 10.1016/j.jaip.2020.09.014, PMID 32980583
Karnam A, Rambabu N, Das M, Bou-Jaoudeh M, Delignat S, Käsermann F, et al. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells. Commun Biol 2020;3:96. doi: 10.1038/s42003-020-0825-4, PMID 32132640
NTR7403. Nasal Administration of Palivizumab to Prevent RSV Infection. Available from: https://trialsearch.who.int/trial2. aspx trialid=NTR7403
Halwe S, Kupke A, Vanshylla K, Liberta F, Gruell H, Zehner M, et al. Intranasal administration of a monoclonal neutralizing antibody protects mice against SARS-CoV-2 infection. Viruses 2021;13:1498. doi: 10.3390/v13081498, PMID 34452363
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020;94:e02015-19. doi: 10.1128/JVI.02015-19, PMID 31826992
Mora AL, Detalle L, Gallup JM, Van Geelen A, Stohr T, Duprez L, et al. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. mAbs 2018;10:778-95. doi: 10.1080/19420862.2018.1470727, PMID 29733750
Ibañez LI, De Filette M, Hultberg A, Verrips T, Temperton N, Weiss RA, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis 2011;203:1063-72. doi: 10.1093/infdis/jiq168, PMID 21450996
Wen J, Zhao S, He D, Yang Y, Li Y, Zhu S. Preparation and characterization of egg yolk immunoglobulin Y specific to Influenza B virus. Antiviral Res 2012;93:154-9. doi: 10.1016/j.antiviral.2011.11.005, PMID 22127067
Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, et al. An ultra-potent synthetic nanobody neutralizes SARS-CoV-2 by locking Spike into an inactive conformation. bioRxiv 2020;.
Omri A. Pulmonary drug and vaccine delivery: Therapeutic significance and major challenges. Expert Opin Drug Deliv 2015;12:853-5. doi: 10.1517/17425247.2015.1044277, PMID 25990662
Lipinski CA. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004;1:337-41. doi: 10.1016/j. ddtec.2004.11.007, PMID 24981612
Smaldone G, Berkland C, Gonda I, Mitchell J, Usmani OS, Clark A. Ask the experts: The benefits and challenges of pulmonary drug delivery. Ther Deliv 2013;4:905-13. doi: 10.4155/tde.13.76, PMID 23919470
Kim SY, Wong AH, Neel EA, Chrzanowski W, Chan HK. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opin Drug Deliv 2015;12:869-87. doi: 10.1517/17425247.2015.993314, PMID 25522669
Alastruey-Izquierdo A, Cadranel J, Flick H, Godet C, Hennequin C, Hoenigl M, et al. Treatment of chronic pulmonary aspergillosis: Current standards and future perspectives. Respiration 2018;96:159-70. doi: 10.1159/000489474, PMID 29982245
Rubin BK, Williams RW. Emerging aerosol drug delivery strategies: From bench to clinic. Adv Drug Deliv Rev 2014;75:141-8. doi: 10.1016/j.addr.2014.06.008, PMID 24993613
Published
How to Cite
Issue
Section
Copyright (c) 2023 Suraj
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.