FREQUENCY OF CLAR AND JAK2 MUTATIONS IN SUDANESE CHRONIC MYELOID LEUKEMIA PATIENTS WITH PHILADELPHIA-POSITIVE DISEASE
DOI:
https://doi.org/10.22159/ajpcr.2023.v16i8.48344Keywords:
Chronic myeloid leukemia, Philadelphia chromosome, BCR-ABL, CLAR mutation, JAK2V617F mutationAbstract
Objective: It is well-established that myeloproliferative diseases coexist with CLAR and JAK2. In Ph+ chronic myeloid leukemia (CML), only a few case reports indicate the existence of CLAR, JAK2V617F, and JAK2 exon 12 mutations.
Methods: This study examined CALR and JAK2 mutation profiles in Sudanese Chronic Myeloid Leukemia patients with Philadelphia-positive patients. Blood samples were collected from 100 patients with Ph+ CML chromosomes. Results for the JAK2V617F mutation were confirmed using the TaqMan® Mutation Detection Assay, and the four common mutations on exon 12 and CLAR mutations were confirmed using allele-specific PCR (AS-PCR) and Sanger sequencing.
Results: CML patients with CALR frameshift mutations were detected in two patients (2%), patients with JAK2 exon 12 mutations were found in two patients (2%), and patients with JAK2V617F mutations made up 4 (4%) of the total CML patients. No significant relationships existed between mutations and age, WBC, RBC, Hb, HCT, or platelet parameters. Patients with CLAR, JAK2 exon 12, and JAK2V617F mutations have normal leukocyte counts and lower values compared to triple-negative Ph+ CML, but these differences are not statistically significant (p values for each 0.084, 0.173, and 0.072).
Conclusion: It is conceivable for Ph+ CML and all mutations to coexist.
Downloads
References
Fialkow PJ, Denman AM, Jacobson RJ, Lowenthal MN. Chronic myelocytic leukemia. Origin of some lymphocytes from leukemic stem cells. J Clin Invest 1978;62:815-23. doi: 10.1172/JCI109193, PMID 308953
Takahashi N, Miura I, Saitoh K, Miura AB. Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood 1998;92:4758-63. PMID 9845542
Holyoake TL, Jiang X, Drummond MW, Eaves AC, Eaves CJ. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 2002;16:549-58. doi: 10.1038/sj.leu.2402444, PMID 11960331
Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobson RJ, Hansen JA. Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 1981;58:158-63. PMID 6972238
Raskind WH, Jacobson R, Murphy S, Adamson JW, Fialkow PJ. Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocythemia. J Clin Invest 1985;75:1388-90. doi: 10.1172/JCI111840, PMID 3921571
Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S, et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res 2005;65:9152-4. doi: 10.1158/0008-5472.CAN-05-2017, PMID 16230371
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369:2391-405. doi: 10.1056/ NEJMoa1312542, PMID 24325359
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369:2379-90. doi: 10.1056/NEJMoa1311347, PMID 24325356
Swerdlow SH. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Vol. 2. France: International Agency for Research on Cancer; 2008. p. 439.
Alkhatabi H, Abdulqayoom H, Alserihi R, Felimban R, Elaimi A, Allala Z, et al. Carlituculin and JAK2 Exon 12 mutation screening in patients with myeloproliferative neoplasm’s in Jeddah Region, Saudi Arabia. J Pharm Res Int 2021;33:420-8.
Levine RL, Loriaux M, Huntly BJ, Loh ML, Beran M, Stoffregen E, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005;106:3377-9. doi: 10.1182/blood-2005-05-1898, PMID 16081687
Tabassum N, Saboor M, Ghani R, Moinuddin M. Frequency of JAK2 V617F mutation in patients with Philadelphia positive chronic myeloid leukemia in Pakistan. Pak J Med Sci 2014;30:185-8. doi: 10.12669/ pjms.301.3906, PMID 24639858
Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005;106:2162-8. doi: 10.1182/ blood-2005-03-1320, PMID 15920007
Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014;124:2507-13, quiz 2615. doi: 10.1182/ blood-2014-05-579136, PMID 25037629
Tefferi A, Pardanani A. Myeloproliferative neoplasms: A contemporary review. JAMA Oncol 2015;1:97-105. doi: 10.1001/jamaoncol.2015.89, PMID 26182311
Krämer A, Reiter A, Kruth J, Erben P, Hochhaus A, Müller M, et al. JAK2-V617F mutation in a patient with Philadelphia-chromosome-positive chronic myeloid leukaemia. Lancet Oncol 2007;8:658-60. doi: 10.1016/S1470-2045(07)70206-1, PMID 17613428
Bocchia M, Vannucchi AM, Gozzetti A, Guglielmelli P, Poli G, Crupi R, et al. Insights into JAK2-V617F mutation in CML. Lancet Oncol 2007;8:864-6. doi: 10.1016/S1470-2045(07)70295-4, PMID 17913657
Pahore ZA, Shamsi TS, Taj M, Farzana T, Ansari SH, Nadeem M, et al. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression. J Coll Physicians Surg Pak 2011;21:472-5. PMID 21798133
Bee PC, Gan GG, Nadarajan VS, Latiff NA, Menaka N. A man with concomitant polycythaemia vera and chronic myeloid leukemia: The dynamics of the two disorders. Int J Hematol 2010;91:136-9. doi: 10.1007/s12185-009-0471-6, PMID 20047097
Jallades L, Hayette S, Tigaud I, Johnston A, Coiffier B, Magaud JP, et al. Emergence of therapy-unrelated CML on a background of BCR-ABL-negative JAK2V617F-positive chronic idiopathic myelofibrosis. Leuk Res 2008;32:1608-10. doi: 10.1016/j.leukres.2008.03.004, PMID 18448166
Nadali F, Ferdowsi SH, Karimzadeh P, Chahardouli B, Einollahi N, Mousavi SA, et al. JAK2-V617F mutation and Philadelphia positive chronic myeloid leukemia. Int J Hematol Oncol Stem Cell Res 2009:43-5.
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:1779-90. doi: 10.1056/NEJMoa051113, PMID 15858187
Luo W, Yu Z. Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs). Stem Cell Investig 2015;2:16. doi: 10.3978/j. issn.2306-9759.2015.08.01, PMID 27358884
Guglielmelli P, Nangalia J, Green AR, Vannucchi AM. CALR mutations in myeloproliferative neoplasms: Hidden behind the reticulum. Am J Hematol 2014;89:453-6. doi: 10.1002/ajh.23678, PMID 24458922
Jones AV, Ward D, Lyon M, Leung W, Callaway A, Chase A, et al. Evaluation of methods to detect CALR mutations in myeloproliferative neoplasms. Leuk Res 2015;39:82-7. doi: 10.1016/j.leukres.2014.11.019, PMID 25499808
Lim KH, Chang YC, Chen CG, Lin HC, Wang WT, Chiang YH, et al. Frequent CALR exon 9 alterations in JAK2 V617F-mutated essential thrombocythemia detected by high-resolution melting analysis. Blood Cancer J 2015;5:e295. doi: 10.1038/bcj.2015.21, PMID 25794131
Kluk MJ, Lindsley RC, Aster JC, Lindeman NI, Szeto D, Hall D, et al. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn 2016;18:507- 15. doi: 10.1016/j.jmoldx.2016.02.003, PMID 27339098
Published
How to Cite
Issue
Section
Copyright (c) 2023 Elrashed B. Yasin, Aymen Yasin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.