ANIMAL MODELS OF DIABETIC NEPHROPATHY

Authors

  • Dira Ummul Azizah Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
  • Anton Bahtiar Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Depok, INDONESIA. Phone/fax : +62-21-7864049/+62-21-7863433 http://orcid.org/0000-0002-2924-3677
  • MARISSA ANGELINA Research Centre for Chemistry, National Research and Innovation Agency Republic of Indonesia, Serpong, South Tangerang, Indonesia.

DOI:

https://doi.org/10.22159/ajpcr.2023.v16i8.48371

Keywords:

Animal model, Diabetes Mellitus, Nephropathy, Rat, Mice

Abstract

Diabetic nephropathy (DN) is the most common complication of diabetes mellitus (DM). It is characterized by high blood glucose levels or hyperglycemia and is accompanied by changes in lipid, carbohydrate, and protein metabolism which can lead to an increased risk of complications due to vascular disease. DN is probably the most insidious among these complications, causing substantial morbidity and mortality. In this article, we will review the literature on animal models of diabetes. We will discuss several species as animal models for Type 1 and 2 diabetes, including zebrafish, rabbits, mice, rats, and rat models. This article also provides various methods used in research with model animals and presents the required result for studying diabetic DN.

Downloads

Download data is not yet available.

References

Alipour A, Zare H, Poursharifi H, Aerab Sheibani K, Ardekani MA. The intermediary role of self-efficacy in relation with stress, glycosylated haemoglobin and health-related quality of life in patients with Type2 diabetes. Iran J Public Health 2012;41:76-80.

Ardiana L, Sauriasari R, Elya B. Antidiabetic activity studies of white tea (Camellia sinensis (L.) O. Kuntze) ethanolic extracts in streptozotocin-nicotinamide induced diabetic rats. Pharmacogn J 2018;10:186-9.

Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb 2018;25:771-82.

Azeez A, Tomy S, Ali Abdalla FM, Suresh R, Johnson B. Antidiabetic effect of polyherbal formulation “Kathakakhadiradi Kashyam” in streptozotocin induced diabetic rats. J Young Pharm 2016;8:496-9.

Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol 2017;14:48-56. doi: 10.1038/ nrneph.2017.142

Betz B, Conway BR. An update on the use of animal models in diabetic nephropathy research. Curr Diab Rep 2016;16:18.

Graham P, Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Curr Top Dev Biol 2017;121:397-419.

Nguyen I, van Koppen A, Joles JA. Animal models of diabetic kidney disease. In: Diabetic Nephropathy. Cham: Springer International Publishing; 2019. p. 375-413.

Persson F, Rossing P. Diagnosis of diabetic kidney disease: State of the art and future perspective. Kidney Int Suppl (2011) 2018;8:2-7.

Xu GK, Sun CY, Qin XY, Han Y, Li Y, Xie GY, et al. Effects of ethanol extract of Bombax ceiba leaves and its main constituent mangiferin on diabetic nephropathy in mice. Chin J Nat Med 2017;15:597-605.

Feng Y, Weng H, Ling L, Zeng T, Zhang Y, Chen D, et al. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice. Int J Biol Macromol 2019;132:1001-11. doi: 10.1016/j.ijbiomac.2019.03.242

Qiao S, Liu R, Lv C, Miao Y, Yue M, Tao Y, et al. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway. Free Radic Biol Med 2019;145:118-35. doi: 10.1016/j.freeradbiomed.2019.09.003

Lee JH, Sarker MK, Choi H, Shin D, Kim D, Jun HS. Lysophosphatidic acid receptor 1 inhibitor, AM095, attenuates diabetic nephropathy in mice by downregulation of TLR4/NF-κB signaling and NADPH oxidase. Biochim Biophys Acta Mol Basis Dis 2019;1865:1332-40. doi: 10.1016/j.bbadis.2019.02.001

Liu B, Miao J, Peng M, Liu T, Miao M. Effect of 3:7 ratio of Astragalus total saponins and Curcumin on the diabetic nephropathy rats model. Saudi J Biol Sci 2019;26:188-94. doi: 10.1016/j.sjbs.2018.11.003

De Groot T, Damen L, Kosse L, Alsady M, Doty R, Baumgarten R, et al. Lithium reduces blood glucose levels, but aggravates albuminuria in BTBR-ob/ob mice. PLoS One 2017;12:e0189485.

Birnbaum Y, Bajaj M, Yang HC, Ye Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with Type 2 diabetes. Cardiovasc Drugs Ther 2018;32:135-45.

Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob Type 2 diabetic mice with and without hypertension. Am J Physiol Ren Physiol 2014;307:F317-25.

Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: Contributions from the rat. Dis Model Mech 2016;9:1419-33.

Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez- Suarez XM, Flint J, et al. Progress and prospects in rat genetics: A community view. Nat Genet 2008;40:516-22.

Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ ARE/glyoxalase 1 pathway. Biomed Pharmacother 2019;111:1166-75. doi: 10.1016/j.biopha.2019.01.030

Wang HQ, Wang SS, Chiufai K, Wang Q, Cheng XL. Umbelliferone ameliorates renal function in diabetic nephropathy rats through regulating inflammation and TLR/NF-κB pathway. Chin J Nat Med 2019;17:346-54. doi: 10.1016/S1875-5364(19)30040-8

Li D, Lu Z, Jia J, Zheng Z, Lin S. MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res 2013;37:422-31.

Jdir H, Kolsi RB, Zouari S, Hamden K, Zouari N, Fakhfakh N. The cruciferous Diplotaxis simplex: Phytochemistry analysis and its protective effect on liver and kidney toxicities, and lipid profile disorders in alloxan-induced diabetic rats. Lipids Health Dis 2017;16:100.

Sen Z, Weida W, Jie M, Li S, Dongming Z, Xiaoguang C. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3- mediated profibrosis. Phytomedicine 2019;57:385-95.

Guex CG, Reginato FZ, de Jesus PR, Brondani JC, Lopes GH, de Freitas Bauermann L. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol 2019;235:1-7. doi: 10.1016/j.jep.2019.02.001

Katsuda Y, Sasase T, Tadaki H, Mera Y, Motohashi Y, Kemmochi Y, et al. Contribution of hyperglycemia on diabetic complications in obese Type 2 diabetic SDT fatty rats: Effects of SGLT inhibitor phlorizin. Exp Anim 2014;64:161-9.

Civantos E, Bosch E, Ramirez E, Zhenyukh O, Egido J, Lorenzo O, et al. Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes Metab Syndr Obes 2017;10:207-22.

Van Dijk CG, Oosterhuis NR, Xu YJ, Brandt M, Paulus WJ, Van Heerebeek L, et al. Distinct endothelial cell responses in the heart and kidney microvasculature characterize the progression of heart failure with preserved ejection fraction in the obese ZSF1 rat with cardiorenal metabolic syndrome. Circ Hear Fail 2016;9:e002760.

Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, et al. An atherogenic paigen-diet aggravates nephropathy in Type 2 diabetic OLETF rats. PLoS One 2015;10:e0143979.

Shin SJ, Chung S, Kim SJ, Lee EM, Yoo YH, Kim JW, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of Type 2 diabetes. PLoS One 2016;11:e0165703.

Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in zucker diabetic fatty rats. PLoS One 2014;9:e87936.

Ito D, Cao P, Kakihana T, Sato E, Suda C, Muroya Y, et al. Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in Zucker diabetic rats. PLoS One 2015;10:e0138037.

Castoldi G, di Gioia CR, Bombardi C, Maestroni S, Carletti R, Steckelings UM, et al. Prevention of diabetic nephropathy by compound 21, selective agonist of angiotensin Type 2 receptors, in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 2014;307:F1123-31.

Hoshi S, Shu Y, Yoshida F, Inagaki T, Sonoda J, Watanabe T, et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Invest 2002;82:25-35.

Matsui K, Ohta T, Oda T, Sasase T, Ueda N, Miyajima K, et al. Diabetes-associated complications in spontaneously diabetic torii fatty rats. Exp Anim 2008;57:111-21.

Tofovic SP, Kusaka H, Kost CK, Bastacky S. Renal function and structure in diabetic, hypertensive, obese ZDFxSHHF-hybrid rats. Ren Fail 2000;22:387-406.

Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of Type 2 diabetes. Am J Physiol Renal Physiol 2007;293:F1605-13.

Kawano K, Mori S, Hirashima T, Man ZW, Natori T. Examination of the pathogenesis of diabetic nephropathy in OLETF rats. J Vet Med Sci 1999;61:1219-28.

Moran TH. Unraveling the obesity of OLETF rats. Physiol Behav 2008;94:71-8.

Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res 2020;2020:9416419.

Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012;2:1303-53.

Mathews CE, Langley SH, Leiter EH. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002;73:1333-6.

Xu J, Huang Y, Li F, Zheng S, Epstein PN. FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria. Am J Physiol Physiol 2010;299:F487-94. doi: 10.1152/ajprenal.00018.2010

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001;50:537-46.

Teiken JM, Audettey JL, Laturnus DI, Zheng S, Epstein PN, Carlson EC. Podocyte loss in aging OVE26 diabetic mice. Anat Rec Adv Integr Anat Evol Biol 2008;291:114-21. doi: 10.1002/ar.20625

Schlosser MJ, Kapeghian JC, Verlangieri AJ. Effects of streptozotocin in the male guinea pig: A potential animal model for studying diabetes. Life Sci 1984;35:649-55.

Susztak K, Raff AC, Schiffer M, Böttinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225-33.

Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology 2007;12:261-6. doi: 10.1111/j.1440-1797.2007.00796.x

Appelhoff RJ, Hill JV, Findon G, Frampton CM, Perry E, Ponnamperuma D, et al. Differential contribution of diabetes and the Ren2 gene to glomerular pathology in diabetic (mREN-2)27 rats. Lab Investig 2010;90:1225-35.

Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2015;70:5.47.1-5.47.20.

Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J North Am 2010;1:130-4.

Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of Type 2 diabetes (review). Acta Physiol Hung 2014;101:408-20.

Hu Y, Ye S. Experimental models of Type 2 diabetic nephropathy. Chin Med J (Engl) 2013;126:574-7.

Barman S, Das S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J Pharmacol 2012;44:219.

Shahraki MR, Samadi Noshahr Z, Ahmadvand H, Nakhaie A. Anti-nociceptive and anti-inflammatory effects of Withania somnifera root in fructose fed male rats. J Basic Clin Physiol Pharmacol 2016;27:387-91.

Shahraki MR, Mirshekari H, Samadi Z, Shahraki AR, Shahraki E. Effects of Artemisia dracunculus aqueous extract on blood sugar, serum insulin, triglyceride and liver enzymes in fructose drinking water male rats. Zahedan J Res Med Sci 2017;19:e4402.

Mohammad Reza S, Hamideh M, Zahra S. The nociceptive and anti-inflammatory effects of Artemisia dracunculus L. Aqueous extract on fructose fed male rats. Evid Based Complement Alternat Med 2015;2015:895417.

Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Physiol 2007;292:F423-9.

Uil M, Scantlebery AM, Butter LM, Larsen PW, de Boer OJ, Leemans JC, et al. Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the “resistant” C57Bl/6J mouse strain. Sci Rep 2018;8:5542.

Oztürk Y, Altan VM, Yildizoğlu-Ari N. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev 1996;48:69-112.

Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005;22:359-70. doi: 10.1111/j.1464-5491.2005.01499.x

Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004;68:2257-64.

Zhang MH, Feng L, Zhu MM, Gu JF, Jiang J, Cheng XD, et al. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats. J Ethnopharmacol 2014;151:591-600.

Zheng XK, Zhang L, Wang WW, Wu YY, Zhang QB, Feng WS. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. J Ethnopharmacol 2011;137:662-8.

Liu Z, Li W, Li X, Zhang M, Chen L, Zheng Y, et al. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on Type 2 diabetic rats induced by high-fat diet and streptozotocin. J Ethnopharmacol 2013;145:233-40.

Wu D, Wen W, Qi CL, Zhao RX, Lü JH, Zhong CY, et al. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine 2012;19:712-8.

Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, et al. High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human Type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutr Metab Cardiovasc Dis 2006;16:477-84.

Parhizgar S, Hosseinian S, Soukhtanloo M, Bideskan A, Hadjzadeh MA, Shahraki S, et al. Plantago major protects against cisplatin-induced renal dysfunction and tissue damage in rats. Saudi J Kidney Dis Transplant 2018;29:1057.

Hosseinian S, Ebrahimzadeh Bideskan A, Shafei MN, Sadeghnia HR, Soukhtanloo M, Shahraki S, et al. Nigella sativa extract is a potent therapeutic agent for renal inflammation, apoptosis, and oxidative stress in a rat model of unilateral ureteral obstruction. Phyther Res 2018;32:2290-8. doi: 10.1002/ptr.6169

Zhao HJ, Wang S, Cheng H, Zhang M, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 2006;17:2664-9.

Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Investig 2008;88:515-28.

Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994;43:384-8.

Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I--converting enzyme gene. Diabetes 1994;43:690-5.

Huang W, Gallois Y, Bouby N, Bruneval P, Heudes D, Belair MF, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A 2001;98:13330-4.

Tan Y, Keum JS, Wang B, McHenry MB, Lipsitz SR, Jaffa AA. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol 2007;293:F1026-35.

Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009;75:1019-30.

Mou Z, Feng Z, Xu Z, Zhuang F, Zheng X, Li X, et al. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun

is an effective method for inducing experimental diabetic nephropathy in the “resistant” C57Bl/6J mouse strain. Sci Rep 2018;8:5542.

Oztürk Y, Altan VM, Yildizoğlu-Ari N. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev 1996;48:69-112.

Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005;22:359-70. doi: 10.1111/j.1464-5491.2005.01499.x

Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004;68:2257-64.

Zhang MH, Feng L, Zhu MM, Gu JF, Jiang J, Cheng XD, et al. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats. J Ethnopharmacol 2014;151:591-600.

Zheng XK, Zhang L, Wang WW, Wu YY, Zhang QB, Feng WS. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. J Ethnopharmacol 2011;137:662-8.

Liu Z, Li W, Li X, Zhang M, Chen L, Zheng Y, et al. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on Type 2 diabetic rats induced by high-fat diet and streptozotocin. J Ethnopharmacol 2013;145:233-40.

Wu D, Wen W, Qi CL, Zhao RX, Lü JH, Zhong CY, et al. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine 2012;19:712-8.

Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, et al. High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human Type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutr Metab Cardiovasc Dis 2006;16:477-84.

Parhizgar S, Hosseinian S, Soukhtanloo M, Bideskan A, Hadjzadeh MA, Shahraki S, et al. Plantago major protects against cisplatin-induced renal dysfunction and tissue damage in rats. Saudi J Kidney Dis Transplant 2018;29:1057.

Hosseinian S, Ebrahimzadeh Bideskan A, Shafei MN, Sadeghnia HR, Soukhtanloo M, Shahraki S, et al. Nigella sativa extract is a potent therapeutic agent for renal inflammation, apoptosis, and oxidative stress in a rat model of unilateral ureteral obstruction. Phyther Res 2018;32:2290-8. doi: 10.1002/ptr.6169

Zhao HJ, Wang S, Cheng H, Zhang M, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 2006;17:2664-9.

Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Investig 2008;88:515-28.

Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994;43:384-8.

Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I--converting enzyme gene. Diabetes 1994;43:690-5.

Huang W, Gallois Y, Bouby N, Bruneval P, Heudes D, Belair MF, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A 2001;98:13330-4.

Tan Y, Keum JS, Wang B, McHenry MB, Lipsitz SR, Jaffa AA. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol 2007;293:F1026-35.

Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009;75:1019-30.

Mou Z, Feng Z, Xu Z, Zhuang F, Zheng X, Li X, et al. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 2019;508:243-9. doi: 10.1016/j.bbrc.2018.11.128

Zhao Q, Li J, Yan J, Liu S, Guo Y, Chen D, et al. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci 2016;157:82-90. doi: 10.1016/j.lfs.2016.05.045

Mumtaz FH, Dashwood MR, Khan MA, Thompson CS, Mikhailidis DP, Morgan RJ. Down-regulation of nitric oxide synthase in the diabetic rabbit kidney: Potential relevance to the early pathogenesis of diabetic nephropathy. Curr Med Res Opin 2004;20:1-6.

Tidke PS, Patil CR. Nrf2 activator Corosolic acid meliorates alloxan induced diabetic nephropathy in mice. Asian Pac J Trop Biomed 2017;7:797-804. doi: 10.1016/j.apjtb.2017.08.010

Li J, Qiu P, Wang S, Wu J, He Q, Li K, et al. β-N-Oxalyl-L-α,β- diaminopropionic acid from Panax notoginseng plays a major role in the treatment of Type 2 diabetic nephropathy. Biomed Pharmacother 2019;114:108801.

Chen HW, Yang MY, Hung TW, Chang YC, Wang CJ. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J Food Drug Anal 2019;27:736-48. doi: 10.1016/j. jfda.2018.12.009

Figueroa-Pérez MG, Pérez-Ramírez IF, Enciso-Moreno JA, Gallegos- Corona MA, Salgado LM, Reynoso-Camacho R. Diabetic nephropathy is ameliorated with peppermint (Mentha piperita) infusions prepared from salicylic acid-elicited plants. J Funct Foods 2018;43:55-61. doi: 10.1016/j.jff.2018.01.029

Weng HB, Han WK, Xiong YW, Jin ZH, Lan Z, Liu C, et al. Taxus chinensis ameliorates diabetic nephropathy through down-regulating TGF-β1/Smad pathway. Chin J Nat Med 2018;16:90-6. doi: 10.1016/ S1875-5364(18)30034-7

Ding S, Qiu H, Huang J, Chen R, Zhang J, Huang B, et al. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chem Biol Interact 2019;307:116-24. doi: 10.1016/j.cbi.2019.05.004

Yang S, Zhao L, Han Y, Liu Y, Chen C, Zhan M, et al. Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biol 2017;13:482-97. doi: 10.1016/j.redox.2017.07.002

Stevens M, Oltean S. Assessment of kidney function in mouse models of glomerular disease. J Vis Exp 2018;2018:57764.

Shostak S. Histology’s nomenclature: Past, present and future. Biol Syst Open Access 2013;2:1-5.

Musumeci G. Past, present and future: Overview on histology and histopathology. J Histol Histopathol 2014;1:5.

Yang H, Xie T, Li D, Du X, Wang T, Li C, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol Metab 2019;23:24-36. doi: 10.1016/j.molmet.2019.02.007

Natarajan M, Habib SL, Reddick RL, Delma CR, Manickam K, Prihoda TJ, et al. Endothelial cell-specific overexpression of endothelial nitric oxide synthase in Ins2Akita mice exacerbates diabetic nephropathy. J Diabetes Complications 2019;33:23-32.

Liu W, Chen X, Wang Y, Chen Y, Chen S, Gong W, et al. Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in Type 2 diabetic db/db mice. Pharmacol Res 2019;150:104506. doi: 10.1016/j.phrs.2019.104506

Brosius FC, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol 2009;20:2503-12.

Brosius FC, Alpers CE. New targets for treatment of diabetic nephropathy: what we have learned from animal models. Curr Opin

Nephrol Hypertens. 2013 Jan;22(1):17–25.

Published

07-08-2023

How to Cite

Azizah, D. U., A. Bahtiar, and M. ANGELINA. “ANIMAL MODELS OF DIABETIC NEPHROPATHY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 16, no. 8, Aug. 2023, pp. 11-23, doi:10.22159/ajpcr.2023.v16i8.48371.

Issue

Section

Review Article(s)

Most read articles by the same author(s)