AN OVERVIEW OF MULTIFACETED SIGNIFICANCE OF EUDRAGIT POLYMERS IN DRUG DELIVERY SYSTEMS

Authors

  • Sukhbir Singh
  • . Neelam
  • Sandeep Arora
  • Yashpal Singla

Abstract

ABSTRACT
Polymers constitute the major part of pharmaceutical formulations functionality and significance. Development of novel drug delivery system (NDDS)
has been made possible by eudragit polymers to modify the release pattern of drug. The basic objective of sustained drug release is to achieve
more effective therapies by eliminating potential for both under and overdosing. Other advantages include maintenance of drug concentration with
in desired range, fewer administration, optimal drug use and patient compliance. This review article gives outline of classification, nomenclature,
physiological, and pharmaceutical properties of eudragit polymers. Eudragit polymers can be classified on the basis of use or type of formulation
produced and includes time-controlled drug release by sustained release formulations, gastro-resistance and GI targeting by enteric formulations and
moisture protection and odor/taste masking by protective formulations. Eudragit polymers are available in wide range of physical forms viz. aqueous
dispersion, organic solution, granule and powder with varying degrees of solubility. Eudragit polymers have numerous drug release mechanism and
wide applications in different drug delivery systems i.e. ophthalmic, buccal, sublingual, enteric, oral, colon, vaccine, gene, vaginal and transdermal
drug delivery. It has been concluded that eudragit polymers have multifaceted applications in pharmacy and drug delivery system.
Keywords: Eudragit, Time-controlled, Sublingual.

Downloads

Download data is not yet available.

References

REFERENCES

Sintze MB, Bernatchez SF, Tabatabay C, Gurny R. Biomaterials in ophthalmic drug delivery. Eur J Pharm Biopharm 1996;42:358-74.

Nagai T, Machida Y. Mucosal adhesive dosage forms. Pharm Int 1985;6:196-200.

Le Bourlais CA, Treupel-Acar L, Rhodes CT, Sado PT, Leverge R. New ophthalmic drug delivery systems. Drug Dev Ind Pharm 1995;21:19‑59.

Nikam VK, Kotade KB, Gaware VM. Dolas RT. Eudragit a versatile polymer: A review. Pharmacol Online 2011;1:152-64.

Raymond CR, Paul JS, Marian EQ. Handbook of Pharmaceutical Excipients. 6th ed. Washington, London: APHA Publications, Pharmaceutical Press; 2003. p. 525-33.

Available from: http://www.scribd.com/doc/5682786/Kollicoat-MAE-grades.

Available from: http://www.evonik.com.

Bodmeier R, Paeratakul O. Evaluation of drug-containing polymer films prepared from aqueous latexes. Pharm Res 1989;6(8):725-30.

Apurba SA, Atiqul HP, Dilasha S, Golam K, Reza-ul J. Investigation of in-vitro release kinetics of carbamazepine from Eudragit® RS PO and RL PO matrix tablets. Trop J Pharm Res 2009;8(2):145-52.

Wagner K, McGinity J. Influence of chloride ion exchange on the permeability and drug release of Eudragit RS 30 D films. J Control Release 2002;82(2-3):385-97.

Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 2002;16(1-2):53-61.

Ghebre-Sellassie I, Gordon RH, Nesbitt RU, Fawzi MB. Evaluation of acrylic-based modified-release film coatings. Int J Pharm 1987;37:211‑8.

Pignatello R, Bucolo C, Puglisi G. Ocular tolerability of Eudragit RS100 and RL100 nanosuspensions as carriers for ophthalmic controlled drug delivery. J Pharm Sci 2002;91(12):2636-41.

Duarte AR, Roy C, Vega-González A, Duarte CM, Subra-Paternault P. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. Int J Pharm 2007;332(1-2):132-9.

Asian J Pharm Clin Res, Vol 8, Issue 5, 2015, 1-6

Singh et al.

Verma P, Gupta RN, Jha AK, Pandey R. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv 2013;20(7):269-76.

Zhang W, Li X, Ye T, Chen F, Yu S, Chen J, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int J Nanomedicine 2014;9:4305-15.

Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci 1992;81(1):1-10.

Ch’ng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II: Synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci 1985;74(4):399-405.

Ali J, Khar RK, Ahuja A. Formulation and characterisation of a buccoadhesive erodible tablet for the treatment of oral lesions. Pharmazie 1998;53(5):329-34.

Nair MK, Chien YW. Development of anticandidal delivery systems, II: Mucoadhesive devices for prolonged drug delivery in the oral cavity. Drug Dev Ind Pharm 1996;22:243-53.

Hoogstraate AJ, Verhoef JC, Tuk B, Pijpers A, Van Leengoed LA, Verheijden JH, et al. Buccal delivery of fluorescein isothiocyanate-dextran 4400 and the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. J Control Release 1996;41(1-2):77-84.

Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ, editors. Oral Mucosal Drug Delivery. New York: Marcel Dekker Inc.; 1996. p. 1-26.

Giri TK, Badwaik H, Alexander A, Tripathi DK. Solubility enhancement of ibuprofen in the presence of hydrophilic polymer and surfactant. Int J Appl Bio Pharm Tech 2010;1:793-800.

Madhav NV, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: A review. J Control Release 2009;140(1):2-11.

Shakya P, Madhav NV, Shakya AK, Singh K. Palatal mucosa as a route for systemic drug delivery: A review. J Control Release 2011;151(1):2‑9.

Diarra M, Pourroy G, Boymond C, Muster D. Fluoride controlled release tablets for intrabuccal use. Biomaterials 2003;24(7):1293-300.

Hao S, Wang B, Wang Y, Zhu L, Wang B, Guo T. Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids Surf B Biointerfaces 2013;108:127-33.

Delf Loveymi B, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Statistical optimization of oral vancomycin-eudragit RS nanoparticles using response surface methodology. Iran J Pharm Res 2012;11(4):1001-12.

Tang J, Xu N, Ji H, Liu H, Wang Z, Wu L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int J Nanomedicine 2011;6:2429-35.

Momoh MA, Kenechukwu FC, Adedokun MO, Odo CE, Attama AA. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres. Drug Deliv 2014;21(3):193-203.

Cetin M, Atila A, Kadioglu Y. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech 2010;11(3):1250‑6.

Quinteros DA, Manzo RH, Allemandi DA. Design of a colonic delivery system based on cationic polymethacrylate (Eudragit E100)-mesalamine complexes. Drug Deliv 2010;17(4):208-13.

Lee WJ, Cha S, Shin M, Jung M, Islam MA, Cho CS, et al. Efficacy of thiolated eudragit microspheres as an oral vaccine delivery system to induce mucosal immunity against enterotoxigenic Escherichia coli in mice. Eur J Pharm Biopharm 2012;81(1):43-8.

Dea-Ayuela MA, Rama-Iñiguez S, Torrado-Santiago S, Bolas-Fernandez F. Microcapsules formulated in the enteric coating copolymer Eudragit L100 as delivery systems for oral vaccination against infections by gastrointestinal nematode parasites. J Drug Target 2006;14(8):567-75.

Voltan R, Castaldello A, Brocca-Cofano E, Altavilla G, Caputo A, Laus M, et al. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res 2007;24(10):1870-82.

Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 2009;26(1):72-81.

Wang WX, Chen HL, Liang WQ. Study on polymethacrylate nanoparticles as delivery system of antisense oligodeoxynucleotides. Acta Pharm Sin 2003;38:298-301.

Gargouri M, Sapin A, Bouli S, Becuwe P, Merlin JL, Maincent P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol Cancer Res Treat 2009;8(6):433-44.

Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 2011;403(1-2):262-7.

Degim IT, Tugcu-Demiröz F, Tamer-Ilbasmis S, Acartürk F. Development of controlled release sildenafil formulations for vaginal administration. Drug Deliv 2008;15(4):259-65.

Verma PR, Iyer SS. Transdermal delivery of propranolol using mixed grades of Eudragit: Design and in vitro and in vivo evaluation. Drug Dev Ind Pharm 2000;26(4):471-6.

Baviskar DT, Parik VB, Jain DJ. Development of matrix-type transdermal delivery of lornoxicam: In vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA J Pharm Sci Technol 2013;67(1):9-22.

Lade UB, Amgaonkar YM, Chikhale RV, Biyani DM, Umekar MJ. Design, formulation and evaluation of transdermal drug delivery system of budesonide. Pharmacol Pharm 2011;2:199-211.

Chandak AR, Prasad Verma PR. Eudragit-based transdermal delivery system of pentazocine: Physico-chemical, in vitro and in vivo evaluations. Pharm Dev Technol 2010;15(3):296-304.

Published

01-09-2015

How to Cite

Singh, S., . Neelam, S. Arora, and Y. Singla. “AN OVERVIEW OF MULTIFACETED SIGNIFICANCE OF EUDRAGIT POLYMERS IN DRUG DELIVERY SYSTEMS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 8, no. 5, Sept. 2015, pp. 1-6, https://journals.innovareacademics.in/index.php/ajpcr/article/view/4986.

Issue

Section

Review Article(s)