CHIMERIC ANTIGEN RECEPTOR T CELLS: PAST, PRESENT, AND FUTURE

Authors

  • NAGARAJ BM Department of Pharmacology, Subbaiah Institute of Medical Sciences, Shivamogga, Karnataka, India https://orcid.org/0009-0003-9594-3668
  • SHRUTHI DP Department of Orthodontics and Dentofacial Orthopaedics, Government Dental College and Research Institute, Bengaluru, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2024v17i7.50815

Keywords:

CAR T Cell Therapy, Chimeric antigen receptor T cells, Anticancer therapy, Autologous T cells, Living drug

Abstract

Chimeric antigen receptor T (CAR T) therapy, a type of anticancer cellular immunotherapy, is emerging expeditiously. Primarily reported in 1987, the concept of a chimeric T-cell receptor (TCR), which combines antibody-derived variable regions with TCR-derived constant regions, was then, followed by double-chain chimeric TCR (cTCR) and single-chain variable fragment receptor chimeric cell (referred to as “T-bodies,” the prototypes of modern CAR). The CAR construct, which incorporates both a costimulatory endodomain and the CD3ζ signaling endodomain, is classified as a second-generation CAR, and this later achieved fantastic success in human clinical trials, marking a momentous milestone in the development journey of the CAR T-cell therapy. Tisagenlecleucel was the first CAR T-cell therapy to be approved by the Food and Drug Administration (FDA) for treating pediatric and young adult acute lymphoblastic leukemia. Six CAR T-cell therapies have been approved by FDA; many more are still there in the budding stages. The major challenges for CAR T-cell therapy are safety, ineffectiveness for solid tumors, cost, etc. To overcome these elements, further research is essential.

Downloads

Download data is not yet available.

References

Um P. Cancer definition. In: Highlander SK, Rodriguez-Valera F, White BA, editors. Encyclopedia of Metagenomics. Boston, MA, USA: Springer; 2015. p. 65.

Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217-22. doi: 10.2991/jegh.k.191008.001, PMID: 31854162

De Marco RC, Monzo HJ, Ojala PM. CAR T cell therapy: A versatile living drug. Int J Mol Sci. 2023;24(7):6300. doi: 10.3390/ijms24076300, PMID: 37047272

Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330. doi: 10.3390/cancers3033279, PMID: 24212956

Dobosz P, Dzieciaątkowski T. The intriguing history of cancer immunotherapy. Front Immunol. 2019;10:2965. doi: 10.3389/ fimmu.2019.02965, PMID: 31921205 6. Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: The history and progress of CAR T cell therapy. Front Immunol. 2023;14:1188049. doi: 10.3389/fimmu.2023.1188049, PMID: 37256141

Tan AT, Schreiber S. Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Res. 2020;176:104748. doi: 10.1016/j. antiviral.2020.104748, PMID: 32087191

Laskowski T, Rezvani K. Adoptive cell therapy: Living drugs against cancer. J Exp Med. 2020;217(12):e20200377. doi: 10.1084/ jem.20200377, PMID: 33227136

Zhou Y, Maldini CR, Jadlowsky J, Riley JL. Challenges and opportunities of using adoptive T-cell therapy as part of an HIV cure strategy. J Infect Dis. 2021;223(12 Suppl 2):38-45. doi: 10.1093/infdis/ jiaa223, PMID: 33586770

Fong KY. Immunotherapy in autoimmune diseases. Ann Acad Med Singap. 2002;31(6):702-6. PMID: 12520821

Duffy SS, Keating BA, Moalem-Taylor G. Adoptive transfer of regulatory T cells as a promising immunotherapy for the treatment of multiple sclerosis. Front Neurosci. 2019;13:1107. doi: 10.3389/ fnins.2019.01107, PMID: 31680840

Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMmedicine. 2022;77:103941. doi: 10.1016/j.ebiom.2022.103941, PMID: 35301179

Yu JX, Upadhaya S, Tatake R, Barkalow F, Hubbard-Lucey VM. Cancer cell therapies: The clinical trial landscape. Nat Rev Drug Discov. 2020;19(9):583-4. doi: 10.1038/d41573-020-00099-9, PMID: 32457476

Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021;12:744823. doi: 10.3389/ fimmu.2021.744823, PMID: 34691052

Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25(9):1341-55. doi: 10.1038/ s41591-019-0564-6, PMID: 31501612

Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92-101.

Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388-98. doi: 10.1158/2159-8290.CD-12-0548, PMID: 23550147

Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: Potential, promises and risks. Mol Cancer. 2023;22(1):82. doi: 10.1186/s12943- 023-01775-1, PMID: 37173782

Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/ s41408-021-00459-7, PMID: 33824268

Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived c regions. Biochem Biophys Res Commun. 1987;149(3):960-8. doi: 10.1016/0006-291x(87)90502-x, PMID: 3122749

Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024-8. doi: 10.1073/pnas.86.24.10024, PMID: 2513569

Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720-4. doi: 10.1073/pnas.90.2.720, PMID: 8421711

Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423-6. doi: 10.1126/science.3140379, PMID: 3140379

Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(16):5879-83. doi: 10.1073/pnas.85.16.5879, PMID: 3045807

Moritz D, Wels W, Mattern J, Groner B. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci U S A. 1994;91(10):4318-22. doi: 10.1073/ pnas.91.10.4318, PMID: 7910405

Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the fc receptor gamma chain. J Exp Med. 1993;178(1):361-6. doi: 10.1084/ jem.178.1.361, PMID: 8315392

Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 1995;55(15):3369-73. PMID: 7614473

Weijtens ME, Willemsen RA, Valerio D, Stam K, Bolhuis RL. Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol. 1996;157(2):836-43. doi: 10.4049/jimmunol.157.2.836, PMID: 8752936

Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20 Pt 1):6106-15. doi: 10.1158/1078-0432.CCR-06-1183, PMID: 17062687

Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J Clin Oncol. 2006;24(13):e20-2. doi: 10.1200/ JCO.2006.05.9964, PMID: 16648493

Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261-71. doi: 10.1182/ blood-2007-12-128843, PMID: 18509084

Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825-33. doi: 10.1038/sj.mt.6300104, PMID: 17299405

Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264-70. doi: 10.1038/nm.1882, PMID: 18978797

Eshhar Z. Tumor-specific T-bodies: Towards clinical application. Cancer Immunol Immunother. 1997;45(3-4):131-6. doi: 10.1007/ s002620050415, PMID: 9435856

Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233-58. doi: 10.1146/ annurev.immunol.14.1.233, PMID: 8717514

Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619-26. doi: 10.1084/ jem.188.4.619, PMID: 9705944

Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20(1):70-5. doi: 10.1038/nbt0102-70, PMID: 11753365

Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822-6. doi: 10.1172/JCI46110, PMID: 21540550

Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172(1):104-13. doi: 10.4049/ jimmunol.172.1.104, PMID: 14688315

Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453-64. doi: 10.1038/ mt.2009.83, PMID: 19384291

Available from: https://www.cancer.gov/about-cancer/treatment/ research/car-t-cells [Last accessed on 2024 Feb 03].

Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of b-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099-102. doi: 10.1182/blood-2010-04-281931, PMID: 20668228

Brentjens RJ, Rivieère I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817-28. doi: 10.1182/blood-2011-04-348540, PMID: 21849486

Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842, PMID: 21832238 45. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725-33. doi: 10.1056/NEJMoa1103849, PMID: 21830940

Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318-21. doi: 10.1126/science.3489291, PMID: 3489291

Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850-4. doi: 10.1126/science.1076514, PMID: 12242449

Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346-57. doi: 10.1200/JCO.2005.00.240, PMID: 15800326

Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62-8. doi: 10.1126/science.aaa4967, PMID: 25838374

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-48. doi: 10.1056/NEJMoa1709866, PMID: 29385370

Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20(1):31-42. doi: 10.1016/S1470-2045(18)30864-7, PMID: 30518502

Feigal EG, Cosenza ME. Cellular-based therapies. In: Translational Medicine. Boca Raton: CRC Press; 2021. p. 359-80.

Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet. 2020;396(10254):839-52. doi: 10.1016/S0140-6736(20)31366-0, PMID: 32888407

Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331-42. doi: 10.1056/ NEJMoa1914347, PMID: 32242358

Munshi NC, Anderson LD Jr., Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705-16. doi: 10.1056/ NEJMoa2024850, PMID: 33626253

Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-Ccell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 2023;41(6):1265-74. doi: 10.1200/JCO.22.00842, PMID: 35658469

Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398(10299):491-502.

Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531-44. doi: 10.1056/NEJMoa1707447, PMID: 29226797

Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45-56. doi: 10.1056/ NEJMoa1804980, PMID: 30501490

Bishop MR, Dickinson M, Purtill D, Barba P, Santoro A, Hamad N, et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N Engl J Med. 2022;386(7):629-39. doi: 10.1056/ NEJMoa2116596, PMID: 34904798

Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 2022;399(10343):2294-308. doi: 10.1016/S0140-6736(22)00662-6, PMID: 35717989

Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non- Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23(1):91-103. doi: 10.1016/S1470- 2045(21)00591-X, PMID: 34895487

Fowler NH, Dickinson M, Dreyling M, Martinez-Lopez J, Kolstad A, Butler J, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: The phase 2 ELARA trial. Nat Med. 2022;28(2):325-32. doi: 10.1038/s41591-021-01622-0, PMID: 34921238

Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet. 2021;398(10297):314-24. doi: 10.1016/S0140- 6736(21)00933-8, PMID: 34175021

Chohan KL, Siegler EL, Kenderian SS. CAR-T cell therapy: The efficacy and toxicity balance. Curr Hematol Malig Rep. 2023;18(2):9-18. doi: 10.1007/s11899-023-00687-7, PMID: 36763238

Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561-9. doi: 10.1056/ NEJMoa1610497, PMID: 28029927

Prenen H, Dekervel J, Hendlisz A, Anguille S, Awada A, Cerf E, et al. Updated data from AlloSHRINK Phase I first-in-human study evaluating CYAD-101, an innovative non-gene edited allogeneic CAR-T in MCRC. J Clin Oncol. 2021;39(3_suppl):74. doi: 10.1200/ JCO.2021.39.3_suppl.74

Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018;9(10):838-47. doi: 10.1007/s13238-017-0440-4, PMID: 28710747

Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I trials. Clin Cancer Res. 2020;26(15):3979-89. doi: 10.1158/1078-0432.CCR-19-3259, PMID: 32371538

Susanibar-Adaniya S, Barta SK. 2021 Update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 2021;96(5):617-29. doi: 10.1002/ajh.26151, PMID: 33661537

Fesnak AD, June CH, Levine BL. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566-81. doi: 10.1038/nrc.2016.97, PMID: 27550819

Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139-52. doi: 10.1146/annurev-med-062315-120245, PMID: 27860544

Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183-97. doi: 10.15252/emmm.201607485, PMID: 28765140

Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2(2):154-66. doi: 10.1158/2326-6066.CIR-13-0027, PMID: 24778279

Kankeu Fonkoua LA, Sirpilla O, Sakemura R, Siegler EL, Kenderian SS. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities. Mol Ther Oncolytics. 2022;25:69-77. doi: 10.1016/j.omto.2022.03.009, PMID: 35434273

Law AM, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020;27:561.

Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, et al. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res Ther. 2021;12(1):81. doi: 10.1186/ s13287-020-02128-1, PMID: 33494834

Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2022;20(1):49-62. doi: 10.1038/ s41571-022-00704-3, PMID: 36418477

Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9, PMID: 29907163

Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood. 2016;127(26):3321-30. doi: 10.1182/blood-2016-04-703751, PMID: 27207799

Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147-67. doi: 10.1038/s41571-019-0297-y, PMID: 31848460

Si S, Teachey DT. Spotlight on tocilizumab in the treatment of car- T-cell-induced cytokine release syndrome: Clinical evidence to date. Ther Clin Risk Manag. 2020;16:705-14. doi: 10.2147/TCRM.S223468, PMID: 32801727

Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al.

Published

07-07-2024

How to Cite

BM, N., and S. DP. “CHIMERIC ANTIGEN RECEPTOR T CELLS: PAST, PRESENT, AND FUTURE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 17, no. 7, July 2024, pp. 16-22, doi:10.22159/ajpcr.2024v17i7.50815.

Issue

Section

Review Article(s)