INSIGHTS ON DRUG TARGETING OF TOXOPLASMA GONDII HOST INVASION PROTEINS: A REVIEW

Authors

  • Indhuja Thirumudi
  • Umashankar Vetrivel HOD,Centre for bioinformaticsVision research foundationSankaranethralyaChennai Tamilnadu600006India
  • Mahalakshmi B
  • Lily Therese K
  • Madhavan Hn

Abstract

Toxoplasma gondii is an obligate intracellular parasite that infects homoeothermic animals. It is also the major cause of retinochoroiditis in humans.
Drugs targeting T. gondii proteins involved in the establishment of host-pathogen interactions is well documented to be an efficient way to combat
the infections. Basically, parasitic invasion of T. gondii occurs by the sequential secretion of apical membrane antigen 1 and rhoptry neck proteins on
the parasite and host cell surfaces, respectively. These proteins operate synergistically and form the moving junction (MJ) complex, thereby, enabling
attachment and penetration of the parasite into the host cell. Better understanding of molecular interactions of these proteins is essential to develop
highly efficient therapeutic modalities. Hence, by this review it is intended to update the current status of rhoptry and other MJ complex proteins as
ideal candidates for targeting T. gondii.

Keywords: Toxoplasma gondii, Rhoptry proteins, Moving junction complex, Toxoplasmosis.

Downloads

Download data is not yet available.

References

Besteiro S, Dubremetz JF, Lebrun M. The moving junction of

apicomplexan parasites: A key structure for invasion. Cell Microbiol

;13(6):797-805.

Louis M. Toxoplasma gondii. In: Weiss LM, Kim K, editors. The Model

Apicomplexan Perspectives and Methods. London: Academic Press/

Elsevier; 2011. p. 49.

Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: From

animals to humans. Int J Parasitol 2000;30(12-13):1217-58.

Dubey JP, Ferreira LR, Martins J, Jones JL. Sporulation and survival of

Toxoplasma gondii oocysts in different types of commercial cat litter.

J Parasitol 2011;97(5):751-4.

Dubey JP. History of the discovery of the life cycle of Toxoplasma

gondii. Int J Parasitol 2009;39(8):877-82.

Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J

Parasitol 1998;28(7):1019-24.

Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii

tachyzoites, bradyzoites, and sporozoites and biology and development

of tissue cysts. Clin Microbiol Rev 1998;11(2):267-99.

Montoya JG. Laboratory diagnosis of Toxoplasma gondii infection and

toxoplasmosis. J Infect Dis 2002;185 Suppl 1:S73-82.

Hokelek M. Toxoplasmosis. Available from: http://www emedicine.

medscape.com/article/229969-overview. [Last updated on

Sep 08].

Remington JS. Toxoplasmosis in the adult. Bull N Y Acad Med

;50(2):211-27.

Montoya JG, Jordan R, Lingamneni S, Berry GJ, Remington JS.

Toxoplasmic myocarditis and polymyositis in patients with acute

acquired toxoplasmosis diagnosed during life. Clin Infect Dis

;24(4):676-83.

Montoya JG, Remington JS. Studies on the serodiagnosis of toxoplasmic

lymphadenitis. Clin Infect Dis 1995;20(4):781-9.

Dorfman RF, Remington JS. Value of lymph-node biopsy in the diagnosis

of acute acquired toxoplasmosis. N Engl J Med 1973;289(17):878-81.

Israelski DM, Remington JS. Toxoplasmosis in the non-AIDS

immunocompromised host. Curr Clin Top Infect Dis 1993;13:322-56.

Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect

Dis 1992;15(2):211-22.

Dannemann BR, Vaughan WC, Thulliez P, Remington JS. Differential

agglutination test for diagnosis of recently acquired infection with

Toxoplasma gondii. J Clin Microbiol 1990;28(9):1928-33.

Hohlfeld P, Daffos F, Costa JM, Thulliez P, Forestier F, Vidaud M.

Prenatal diagnosis of congenital toxoplasmosis with a polymerasechain-

reaction test on amniotic fluid. N Engl J Med 1994;331:695-9.

Remington JS, McLeod R, Thulliez P, Desmonts G. Toxoplasmosis. In:

Remington JS, Klein J, editors. Infectious Diseases of the Fetus and

Newborn Infant. 5th ed. Philadelphia: W.B. Saunders; 2001. p. 205-346.

Montoya JG, Remington JS. Toxoplasmic chorioretinitis in the setting

of acute acquired toxoplasmosis. Clin Infect Dis 1996;23(2):277-82.

Silveira C, Belfort R Jr, Burnier M Jr, Nussenblatt R. Acquired

toxoplasmic infection as the cause of toxoplasmic retinochoroiditis in

families. Am J Ophthalmol 1988;106(3):362-4.

Couvreur J, Thulliez P. Acquired toxoplasmosis of ocular or neurologic

site: 49 cases. Presse Med 1996;25(9):438-42.

Jabs DA, Nguyen QD. Ocular toxoplasmosis. Medical retina. In:

Ryan SJ, Schachat AP, editors. Retina. Vol. 2. Missouri: Mosby-a

Harcourt Health Sciences Company; 2001.

Da-Mata AP, Orefice F. Toxoplasmosis. In: Foster CS, Vitale AT,

editors. Diagnosis and Treatment of Uveitis. Pennsylvania: WB

Saunders Company; 2002. p. 385-410.

Garweg J, Boehnke M, Koerner F. Restricted applicability of the

polymerase chain reaction for the diagnosis of ocular toxoplasmosis.

Ger J Ophthalmol 1996;5(2):104-8.

Jones CD, Okhravi N, Adamson P, Tasker S, Lightman S. Comparison

of PCR detection methods for B1, P30, and 18S rDNA genes of T. gondii

in aqueous humor. Invest Ophthalmol Vis Sci 2000;41(3):634-44.

Holland GN, O’Connor GR, Belfort R Jr, Remington JS. Toxoplasmosis.

In: Pepose JS, Holland GN, Wilhelmus KR, editors. Ocular Infection

and Immunity. St. Louis: Mosby Yearbook; 1996. p. 1183-223.

Diaz MG, Miller D, Perez E, Rosa RH, Davis JL, Alfonso EC. Recovery

and identification of Toxoplasma gondii in cell culture as a causative

agent of necrotizing retinitis [abstract C-483]. In: Proceedings of

the 97th Annual Meeting of the American Society for Microbiology

(Miami Beach, FL, 4-8 May 1997). Washington, DC: ASM; 1997.

Montoya JG, Parmley S, Liesenfeld O, Jaffe GJ, Remington JS. Use of

the polymerase chain reaction for diagnosis of ocular toxoplasmosis.

Ophthalmology 1999;106(8):1554-63.

Sobrin L, Kump LI, Foster CS. Intravitreal clindamycin for toxoplasmic

retinochoroiditis. Retina 2007;27(7):952-7.

Soheilian M, Sadoughi MM, Ghajarnia M, Dehghan MH, Yazdani S,

Behboudi H, et al. Prospective randomized trial of trimethoprim/

sulfamethoxazole versus pyrimethamine and sulfadiazine in the treatment

of ocular toxoplasmosis. Ophthalmology 2005;112(11):1876-82.

Soheilian M, Ramezani A, Azimzadeh A, Sadoughi MM, Dehghan MH,

Shahghadami R, et al. Randomized trial of intravitreal clindamycin and

dexamethasone versus pyrimethamine, sulfadiazine, and prednisolone in

treatment of ocular toxoplasmosis. Ophthalmology 2011;118(1):134-41.

Zangerle R, Allerberger F. Effect of prophylaxis against Pneumocystis

carinii on toxoplasma encephalitis. Lancet 1991;337:1232.

Kovacs JA. Efficacy of atovaquone in treatment of toxoplasmosis in

patients with AIDS. The NIAID-Clinical Center Intramural AIDS

Program. Lancet 1992;340(8820):637-8.

McFadden DC, Tomavo S, Berry EA, Boothroyd JC. Characterization

of cytochrome b from Toxoplasma gondii and Q (o) domain mutations

as a mechanism of atovaquone-resistance. Mol Biochem Parasitol

;108(1):1-12.

Boothroyd JC. Toxoplasma gondii: 25 years and 25 major advances for

the field. Int J Parasitol 2009;39(8):935-46.

Fichera ME, Roos DS. A plastid organelle as a drug target in

apicomplexan parasites. Nature 1997;390:407-9.

Camps M, Arrizabalaga G, Boothroyd J. An rRNA mutation identifies

the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol

Microbiol 2002;43(5):1309-18.

Singh S, Munawwar A, Rao S, Mehta S, Hazarika NK. Serologic

prevalence of Toxoplasma gondii in Indian women of child bearing age

and effects of social and environmental factors. PLoS Negl Trop Dis

;8(3):e2737.

Monzote L, Siddiq A. Drug development to protozoan diseases. Open

Med Chem J 2011;5:1-3.

Holmes M, Liwak U, Pricop I, Wang X, Tomavo S, Ananvoranich S.Silencing of tachyzoite enolase 2 alters nuclear targeting of bradyzoite

enolase 1 in Toxoplasma gondii. Microbes Infect 2010;12(1):19-27.

Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC.

Identification of the moving junction complex of Toxoplasma gondii:

A collaboration between distinct secretory organelles. PLoS Pathog

;1(12):e17.

Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export

of a Toxoplasma gondii rhoptry neck protein complex at the host cell

membrane to form the moving junction during invasion. PLoS Pathog

;5(2):e1000309.

Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving

junction protein RON8 facilitates firm attachment and host cell invasion

in Toxoplasma gondii. PLoS Pathog 2011;7(3):e1002007.

Beck JR, Chen AL, Kim EW, Bradley PJ. RON5 is critical for

organization and function of the Toxoplasma moving junction complex.

PLoS Pathog 2014;10(3):e1004025.

Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH,

et al. Proteomic analysis of rhoptry organelles reveals many novel

constituents for host-parasite interactions in Toxoplasma gondii. J Biol

Chem 2005;280(40):34245-58.

Nichols BA, Chiappino ML, O’Connor GR. Secretion from the

rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct

Res 1983;83(1):85-98.

Stewart MJ, Schulman S, Vanderberg JP. Rhoptry secretion of

membranous whorls by Plasmodium falciparum merozoites. Am J Trop

Med Hyg 1986;35(1):37-44.

Arévalo-Pinzón G, Curtidor H, Abril J, Patarroyo MA. Annotation

and characterization of the Plasmodium vivax rhoptry neck protein 4

(PvRON4). Malar J 2013;12:356.

Takemae H, Sugi T, Kobayashi K, Gong H, Ishiwa A, Recuenco FC,

et al. Characterization of the interaction between Toxoplasma gondii

rhoptry neck protein 4 and host cellular ß-tubulin. Sci Rep 2013;3:3199.

Tyler JS, Boothroyd JC. The C-terminus of Toxoplasma RON2 provides

the crucial link between AMA1 and the host-associated invasion

complex. PLoS Pathog 2011;7(2):e1001282.

Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D,

Crawford J, et al. Host cell invasion by apicomplexan parasites:

Insights from the co-structure of AMA1 with a RON2 peptide. Science

;333(6014):463-7.

Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B,

Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step in

moving junction-dependent invasion by apicomplexan parasites. PLoS

Pathog 2011;7(2):e1001276.

Collins CR, Withers-Martinez C, Hackett F, Blackman MJ. An

inhibitory antibody blocks interactions between components of the

malarial invasion machinery. PLoS Pathog 2009;5(1):e1000273.

Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J,

et al. Interaction between Plasmodium falciparum apical membrane

antigen 1 and the rhoptry neck protein complex defines a key step in

the erythrocyte invasion process of malaria parasites. J Biol Chem

;285(19):14815-22.

Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q,

et al. Rhoptry neck protein RON2 forms a complex with microneme

protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int

;58(1):29-35.

Straub KW, Cheng SJ, Sohn CS, Bradley PJ. Novel components of

the Apicomplexan moving junction reveal conserved and Coccidiarestricted

elements. Cell Microbiol 2009;11(4):590-603.

Sweeney KR, Morrissette NS, LaChapelle S, Blader IJ. Host cell

invasion by Toxoplasma gondii is temporally regulated by the host

microtubule cytoskeleton. Eukaryot Cell 2010;9(11):1680-9.

Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, et al. The

rhoptry neck protein RON4 re-localizes at the moving junction during

Toxoplasma gondii invasion. Cell Microbiol 2005;7(12):1823-33.

McBride JS, Heidrich HG. Fragments of the polymorphic Mr 185,000

glycoprotein from the surface of isolated Plasmodium falciparum

merozoites form an antigenic complex. Mol Biochem Parasitol

;23(1):71-84.

Alexander DL, Arastu-Kapur S, Dubremetz JF, Boothroyd JC.

Plasmodium falciparum AMA1 binds a rhoptry neck protein

homologous to TgRON4, a component of the moving junction in

Toxoplasma gondii. Eukaryot Cell 2006;5(7):1169-73.

Lamarque MH, Papoin J, Finizio AL, Lentini G, Pfaff AW, Candolfi E,

et al. Identification of a new rhoptry neck complex RON9/RON10 in the

Apicomplexa parasite Toxoplasma gondii. PLoS One 2012;7(3):e32457.

Zhao X, Chang Z, Tu Z, Yu S, Wei X, Zhou J, et al. PfRON3 is an

erythrocyte-binding protein and a potential blood-stage vaccine

candidate antigen. Malar J 2014;13:490.

Ito D, Han ET, Takeo S, Thongkukiatkul A, Otsuki H, Torii M, et al.

Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is

localized to the rhoptry body. Parasitol Int. 2011;60(2):132-8.

Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan

rhoptry neck proteins. Trends Parasitol 2010;26(6):297-304.

Seabra MC. Membrane association and targeting of prenylated Ras-like

GTPases. Cell Signal 1998;10(3):167-72.

Gromov P, Celis JE. Rab11a is modified in vivo by isoprenoid

geranylgeranyl. Electrophoresis 1998;19(10):1803-7.

Mohrmann K, van der Sluijs P. Regulation of membrane transport

through the endocytic pathway by rabGTPases. Mol Membr Biol

;16(1):81-7.

Hölttä-Vuori M, Tanhuanpää K, Möbius W, Somerharju P, Ikonen E.

Modulation of cellular cholesterol transport and homeostasis by Rab11.

Mol Biol Cell 2002;13(9):3107-22.

Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes

docking and fusion of multivesicular bodies in a calcium-dependent

manner. Traffic 2005;6(2):131-43.

Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC.

Toxoplasma co-opts host gene expression by injection of a polymorphic

kinase homologue. Nature 2007;445:324-7.

Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ.

Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of

infected host cells. Eukaryot Cell 2007;6(1):73-83.

Lodoen MB, Gerke C, Boothroyd JC. A highly sensitive FRET-based

approach reveals secretion of the actin-binding protein toxofilin during

Toxoplasma gondii infection. Cell Microbiol 2010;12(1):55-66.

Turetzky JM, Chu DK, Hajagos BE, Bradley PJ. Processing and

secretion of ROP13: A unique Toxoplasma effector protein. Int J

Parasitol 2010;1(40):1037-44.

Beckers CJ, Dubremetz JF, Mercereau-Puijalon O, Joiner KA.

The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the

parasitophorous vacuole membrane, surrounding the intracellular

parasite, and is exposed to the host cell cytoplasm. J Cell Biol

;127(4):947-61.

El Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF.

Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein

provides new insights into the association of the ROP2 protein

family with the parasitophorous vacuole membrane. Cell Microbiol

;9(1):54-64.

El Hajj H, Lebrun M, Arold ST, Vial H, Labesse G, Dubremetz JF.

ROP18 is a rhoptry kinase controlling the intracellular proliferation of

Toxoplasma gondii. PLoS Pathog 2007;3(2):e14.

Reichmann G, Dlugonska H, Fischer HG. Characterization of TgROP9

(p36), a novel rhoptry protein of Toxoplasma gondii tachyzoites

identified by T cell clone. Mol Biochem Parasitol 2002;119(1):43-54.

Ossorio PN, Schwartzman JD, Boothroyd JC. A Toxoplasma gondii

rhoptry protein associated with host cell penetration has unusual charge

asymmetry. Mol Biochem Parasitol 1992;50(1):1-15.

Sadak A, Taghy Z, Fortier B, Dubremetz JF. Characterization of

a family of rhoptry proteins of Toxoplasma gondii. Mol Biochem

Parasitol 1988;29(2-3):203-11.

Beckers CJ, Wakefield T, Joiner KA. The expression of Toxoplasma

proteins in Neospora caninum and the identification of a gene encoding

a novel rhoptry protein. Mol Biochem Parasitol 1997;89(2):209-23.

Sinai AP, Joiner KA. The Toxoplasma gondii protein ROP2 mediates

host organelle association with the parasitophorous vacuole membrane.

J Cell Biol 2001;154(1):95-108.

Poupel O, Boleti H, Axisa S, Couture-Tosi E, Tardieux I.

Toxofilin, a novel actin-binding protein from Toxoplasma gondii,

sequesters actin monomers and caps actin filaments. Mol Biol Cell

;11(1):355-68.

Delorme V, Cayla X, Faure G, Garcia A, Tardieux I. Actin dynamics

is controlled by a casein kinase II and phosphatase 2C interplay on

Toxoplasma gondii Toxofilin. Mol Biol Cell 2003;14(5):1900-12.

Labesse G, Gelin M, Bessin Y, Lebrun M, Papoin J, Cerdan R, et al.

ROP2 from Toxoplasma gondii: a virulence factor with a protein-kinase

fold and no enzymatic activity. Structure 2009;17(1):139-46.

Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET,

et al. Polymorphic secreted kinases are key virulence factors in

toxoplasmosis. Science 2006;314(5806):1780-3.

Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, et al. A secreted

serine-threonine kinase determines virulence in the eukaryotic pathogen

Toxoplasma gondii. Science 2006;314(5806):1776-80.

Published

01-05-2015

How to Cite

Thirumudi, I., Umashankar Vetrivel, M. B, L. Therese K, and M. Hn. “INSIGHTS ON DRUG TARGETING OF TOXOPLASMA GONDII HOST INVASION PROTEINS: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 8, no. 3, May 2015, pp. 52-57, https://journals.innovareacademics.in/index.php/ajpcr/article/view/5812.

Issue

Section

Review Article(s)