SILVER NANOPARTICLES: GREEN SYNTHESIS, OPTICAL PROPERTIES, ANTIMICROBIAL ACTIVITY AND ITS MECHANISM USING CITRUS SINENSIS

Authors

  • UTKARSH KAUSHIK University of Rajasthan, Jaipur
  • S.C. JOSHI

Abstract

Objective: Novelty and size specificity of silver nanoparticles (AgNPs) containing products gained popularity in today's world. The present
investigation involves the biosynthesis of AgNPs from Ag nitrate using the peel extract of Citrus sinesis, is facile, worthwhile and promising approach
toward environment protection.
Methods: The analytical techniques, such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), atomic force microscope
(AFM), dynamic light scattering (DLS), scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis, were used to characterize
synthesized nanoparticles. The antimicrobial activity of synthesized nanoparticle has also been examined on selected microbes.
Results: A UV-Vis spectrum shows peak absorption at 425 and 475 nm. FTIR spectroscopy confirmed the presence of protein as the stabilizing
agent surrounding the AgNPs. The SEM and AFM results show average diameter of almost 80 nm, whereas DLS results show average diameter of the
prepared nanoparticles 110 nm. The EDX spectrum confirmed the presence of an elemental Ag signal. Encouraging results were obtained against
Staphylococcus epidermidis and Bacillus cereus.
Conclusion: AgNPs were found to be effective against selected microbes.
Keywords: Silver nanoparticles, Atomic force microscope, Energy-dispersive X-ray, Scanning electron microscope, Staphylococcus epidermidis,
Bacillus cereus.

Downloads

Download data is not yet available.

References

Bernhardt TM, Heiz U, Landman U, editors. Nanocatalysis. In:

Nanoscience and Technology. Berlin: Springer; 2007. p. 1-244.

Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP.

Biosensing with plasmonic nanosensors. Nat Mater 2008;7(6):442-53.

Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA. Controlling

anisotropic nanoparticle growth through plasmon excitation. Nature

;425(6957):487-90.

Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AA,

Atwater HA. Plasmonics: A route to nanoscale optical devices. Adv

Mater 2001;13:1501-5.

Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM,

Narimanov EE, et al. Demonstration of a spaser-based nanolaser.

Nature 2009;460(7259):1110-2.

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices.

Nat Mater 2010;9(3):205-13.

Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R,

Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles:

Past, present and future. Chem Soc Rev 2012;41(7):2943-70.

Slawson RM, Trevors JT, Lee H. Silver accumulation and resistance in

Pseudomonas stutzeri. Arch Microbiol 1992;158:398-04.

Zhao G, Stevens SE Jr. Multiple parameters for the comprehensive

evaluation of the susceptibility of Escherichia coli to the silver ion.

Biometals 1998;11(1):27-32.

Schleifer KH, Kloos WE. Isolation and characterization of Staphylococci

from human skin. Int J Syst Bacteriol 1975;25(1):50-61.

Otto M. Staphylococcus epidermidis – The ‘accidental’ pathogen. Nat

Rev Microbiol 2009;7(8):555-67.

Hedin G. Staphylococcus epidermidis – Hospital epidemiology

and the detection of methicillin resistance. Scand J Infect Dis

Suppl 1993;90:1-59.

Ledenbach LH, Marshall RT. Microbiological spoilage of dairy products.

In: Sperber WH, Doyle MP, editors. Compendium of the Microbiological

Spoilage of Foods and Beverages. New York: Springer; 2010. p. 41-67.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility

testing by a standardized single disk method. Am J Clin Pathol

;45(4):493-6.

Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP,

Balasubramanya RH. Biomimetics of silver nanoparticles by white rot

fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces

;53(1):55-9.

Saxena A, Tripathi RM, Singh RP. Biological synthesis of silver

nanoparticles by using onion (Allium cepa) extract and their antibacterial

activity. Dig J Nanomater Biostruct 2010;5:427-32.

Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN. Green

synthesis of silver nanoparticles using Argimone maxicana leaf

extract and evaluation of their activity. Dig J Nanomater Biostruct

;5:483-89.

Shukla VK, Pandey S, Pandey AC. Green synthesis of silver

nanoparticles using neem leaf (Azadirachta indica) extract. In:

Proceedings of International Conference on Advanced Nanomaterials

and Nanotechnology. Guwahati, Assam, India: ICANN-2009; 2010.

Namratha N, Monica PV. Synthesis of silver nanoparticles using

Azadirachta indica (Neem) extract and usage in water purification.

Asian J Pharm Technol 2013;3:170-4.

Lalitha A, Subbaiya R, Ponmurugan P. Green synthesis of silver

nanoparticles from leaf extract Azhadirachta indica and to study its

anti-bacterial and antioxidant property. Int J Curr Microbiol Appl Sci

;2:228-35.

Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis

of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and

screening its antimicrobial activity. J Nanopart Res 2011;13:2981-8.

Philip D, Unni C. Extra cellular biosynthesis of gold and silver

nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E

;43:1318-22.

Kong J, Yu S. Fourier transform infrared spectroscopic analysis of

protein secondary structures. Acta Biochim Biophys Sin (Shanghai)

;39(8):549-59.

Wang W, Chen Q, Jiang C, Yang D, Liu X, Xu S. One step synthesis

of biocompatible gold nanopartcles using gallic acid in the presence of

Asian J Pharm Clin Res, Vol 8, Issue 6, 2015, 179-184

Kaushik and Joshi

poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp

;301:73-9.

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:

A case study on E. coli as a model for Gram-negative bacteria. J Colloid

Interface Sci 2004;275(1):177-82.

Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. Conduction

electron spin resonance of small silver particles. Spectrochim Acta A

Mol Biomol Spectrosc 2006;63(1):189-91.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial

effects of silver nanoparticles. Nanomedicine 2007;3(1):95-101.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic

study of the antibacterial effect of silver ions on Escherichia coli and

Staphylococcus aureus. J Biomed Mater Res 2000;52(4):662-8.

Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of

bactericidal action of silver zeolite and its comparison with that of

silver nitrate. Appl Environ Microbiol 2003;69(7):4278-81.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB,

Ramírez JT, et al. The bactericidal effect of silver nanoparticles.

Nanotechnology 2005;16(10):2346-53.

Hatchett DW, Henry S. Electrochemistry of sulfur adlayers on lowindex

faces of silver.

J

Phys

Chem 1996;100:9854-9.

Subha V, Ernest Ravindran RS, Sruthi P, Renganathan S. An ecofriendly

approach

for

synthesis of silver nanoparticles

using

Ipomoea

pes-caprae

root extract and

their antimicrobial

properties.

Asian

J

Pharm

Clin Res

;8(5):103-6.

Siddiqui BS, Afshan F, Ghiasuddin, Faizi S, Naqvi SN, Tariq RM.

Two insecticidal tetranortriterpenoids from Azadirachta indica.

Phytochemistry 2000;53(3):371-6.

Huang Q, Li D, Sun Y, Lu Y, Su X, Yang H, et al. Biosynthesis of silver

and gold nanoparticles by novel sundried Cinnamomum camphora leaf.

Nanotechnology 2007;18:105104-15.

Ganesh Babu MM, Gunasekaran P. Production and structural

characterization of crystalline silver nanoparticles from Bacillus cereus

isolate. Colloids Surf B Biointerfaces 2009;74(1):191-5.

Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J. Extracellular

biosynthesis and characterization of silver nanoparticles using

Aspergillus flavus NJP08: A mechanism perspective. Nanoscale

;3(2):635-41.

Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis

of silver nanoparticles using Coriandrum sativum leaf extract and their

application in nonlinear optics. Adv Sci Lett 2010;3:1-6.

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and

bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta

indica) leaf broth. J Colloid Interface Sci 2004;275(2):496-502.

Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles

using plant leaf extracts. Bioprocess Biosyst Eng 2009;32(1):79-84.

Huanga NM, Limb HN, Radimanc S, Khiewd PS, Chiud WS,

Hashime R, et al. Sucrose ester micellar-mediated synthesis of

Ag nanoparticles and the antibacterial properties. Colloids Surf A

Physicochem Eng Asp 2010;353:69-76.

Published

01-11-2015

How to Cite

KAUSHIK, U., and S. JOSHI. “SILVER NANOPARTICLES: GREEN SYNTHESIS, OPTICAL PROPERTIES, ANTIMICROBIAL ACTIVITY AND ITS MECHANISM USING CITRUS SINENSIS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 8, no. 6, Nov. 2015, pp. 179-84, https://journals.innovareacademics.in/index.php/ajpcr/article/view/8145.

Issue

Section

Original Article(s)