HIGH-FAT DIET-INDUCED OXIDATIVE STRESS AND ITS IMPACT ON METABOLIC SYNDROME: A REVIEW

Authors

  • Swaraj Bandhu Kesh Department of Physiology, Government Medical College Rajnandgaon, Rajnandgaon, Chhattisgarh 491441.
  • Debashree Sarkar Department of Physiology, PT. JNM Medical College & Hospital, Raipur, Chhattisgarh, India.
  • Krishnendu Manna Department of Physiology, University College of Science & Technology, 92, APC Road, Kolkata-700009, West Bengal, India.

Abstract

ABSTRACT
Environmental factors such as high saturated fat content in a diet affect pro- and antioxidative balances in metabolic tissues. High-dietary fat intake
promotes the development of obesity and metabolic disorders in humans and rodents as a result of disproportion between energy intake and energy
expenditure. The dreaded events of high-fat diet (HFD) are obesity, hypertension, cardiovascular and cerebrovascular anarchy, Type II diabetes,
infertility, and even cancer. HFD - induced systemic oxidative stress insults an imbalance between oxidants derivatives production and antioxidants
defenses. Reactive oxygen species are mostly reasoned to be detrimental for health. Many evidences regarding HFD - elicited oxidative stress gathered
over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress. The hypothesis
that oxidative stress plays a prodigious role in the development of metabolic disorders, especially insulin resistance, hyperlipidemia, cardiovascular
disease or hepatic steatosis, and steatohepatitis. In this review, we elucidated the mechanistic links between HFD - induced oxidative stress and its
impact on metabolic complications development.
Keywords: Adenosine monophosphate-activated protein kinase, Complications, High-fat diet, Metabolic syndrome, Oxidative stress.

Downloads

Download data is not yet available.

Author Biographies

Swaraj Bandhu Kesh, Department of Physiology, Government Medical College Rajnandgaon, Rajnandgaon, Chhattisgarh 491441.

Assistant Professor

Department of Physiology

Debashree Sarkar, Department of Physiology, PT. JNM Medical College & Hospital, Raipur, Chhattisgarh, India.

Professor and Head, Department of Physiology

Krishnendu Manna, Department of Physiology, University College of Science & Technology, 92, APC Road, Kolkata-700009, West Bengal, India.

Senior Research Fellow, Department of Physiology

References

Vargas-Robles H, Rios A, Arellano-Mendoza M, Escalante BA,

Schnoor M. Antioxidative diet supplementation reverses high-fat dietinduced

increases

of

cardiovascular risk

factors in mice. Oxid

Med Cell

Longev

;2015:467471.

Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesityassociated

oxidative

stress: Strategies finalized

to

improve redox

state.

Int

J Mol Sci 2013;14:10497-538.

Auberval N, Dal S, Bietiger W, Pinget M, Jeandidier N, MaillardPedracini

E,

et

al.

Metabolic and

oxidative

stress

markers in

wistar

rats

after

months

on a high-fat diet. Diabetol Metab Syndr 2014;6:130.

McLaren L. Socioeconomic status and obesity. Epidemiol Rev

;29:29-48.

Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends

in overweight among US children and adolescents, 1999-2000. JAMA

;288:1728-32.

Y Lee C. The Effect of high-fat diet-induced pathophysiological

changes in the gut on obesity: What should be the ideal treatment? Clin

Transl Gastroenterol 2013;4:e39.

Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative

stress and metabolic pathologies: From an adipocentric point of view.

Oxid Med Cell Longev 2014;2014:908539.

Charradi K, Elkahoui S, Limam F, Aouani E. High-fat diet induced an

oxidative stress in white adipose tissue and disturbed plasma transition

metals in rat: Prevention by grape seed and skin extract. J Physiol Sci

;63:445-55.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y,

et al. Increased oxidative stress in obesity and its impact on metabolic

syndrome. J Clin Invest 2004;114:1752-61.

Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res

Pract 2014;2014:943162.

Pessayre D, Berson A, Fromenty B, Mansouri A. Mitochondria in

steatohepatitis. Semin Liver Dis 2001;21:57-69.

Spady DK, Woollett LA, Dietschy JM. Regulation of plasma LDLcholesterol

levels

by

dietary cholesterol

and

fatty acids.

Annu

Rev Nutr

;13:355-81.

Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol

homeostasis. Science 1986;232:34-47.

Horton JD, Goldstein JL, Brown MS. SREBPs: Activators of the

complete program of cholesterol and fatty acid synthesis in the liver.

J Clin Invest 2002;109:1125-31.

Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatosis and

steatohepatitis. Mitochondrial dysfunction in steatohepatitis. Am J

Physiol Gastrointest Liver Physiol 2002;282(2):G193-99.

Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S,

Misu H, et al. Increased oxidative stress precedes the onset of

high-fat diet-induced insulin resistance and obesity. Metabolism

;57(8):1071-7.

Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly

improves obesity-associated inflammation and diabetes in mouse

models of diabesity. Endocrinology 2008;149(7):3549-58.

Rahman MM, Varghese Z, Moorhead JF. Paradoxical increase in nitric

oxide synthase activity in hypercholesterolaemic rats with impaired

renal function and decreased activity of nitric oxide. Nephrol Dial

Transplant 2001;16(2):262-8.

Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin

resistance. Gastroenterology 2007;132(6):2169-80.

Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance – a

mini-review. Gerontology 2009;55(4):379-86.

Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species

facilitate adipocyte differentiation by accelerating mitotic clonal

expansion. J Biol Chem 2009;284(16):10601-9.

Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative

stress in human endothelial cells. FASEB J 1999;13(10):1231-8.

Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M.

Leptin induces mitochondrial superoxide production and monocyte

chemoattractant protein-1 expression in aortic endothelial cells by

increasing fatty acid oxidation via protein kinase A. J Biol Chem

;276(27):25096-100.

Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways

involved in human vascular smooth muscle cell proliferation and

matrix metalloproteinase-2 expression induced by leptin: Inhibitory

effect of metformin. Diabetes 2005;54(7):2227-34.

Maingrette F, Renier G. Leptin increases lipoprotein lipase secretion

by macrophages: Involvement of oxidative stress and protein kinase C.

Diabetes 2003;52(8):2121-8.

Wang CH, Wang CC, Huang HC, Wei YH. Mitochondrial dysfunction

leads to impairment of insulin sensitivity and adiponectin secretion in

adipocytes. FEBS J 2013;280(4):1039-50.

Ye R, Scherer PE. Adiponectin, driver or passenger on the road to

insulin sensitivity? Mol Metab 2013;2(3):133-41.

Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M.

Systemic oxidative stress is associated with visceral fat accumulation

and the metabolic syndrome. Circ J 2006;70(11):1437-42.

Spagnuolo MI, Cicalese MP, Caiazzo MA, Franzese A,

Squeglia V, Assante LR, et al. Relationship between severe obesity and

gut inflammation in children: What’s next? Ital J Pediatr 2010;36:66.

Duparc T, Naslain D, Colom A, Muccioli GG, Massaly N, Delzenne NM,

et al. Jejunum inflammation in obese and diabetic mice impairs enteric

glucose detection and modifies nitric oxide release in the hypothalamus.

Antioxid Redox Signal 2011;14(3):415-23.

Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, et al. Upper

intestinal lipids trigger a gut-brain-liver axis to regulate glucose

production. Nature 2008;452(7190):1012-6.

Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, et al.

High-fat diet: Bacteria interactions promote intestinal inflammation

which precedes and correlates with obesity and insulin resistance in

mouse. PLoS One 2010;5:e12191.

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The

gut microbiota as an environmental factor that regulates fat storage.

Proc Natl Acad Sci U S A 2004;101(44):15718-23.

Bugger H, Abel ED. Molecular mechanisms for myocardial

mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond)

;114(3):195-210.

Nicolson GL. Metabolic syndrome and mitochondrial function:

Molecular replacement and antioxidant supplements to prevent

membrane peroxidation and restore mitochondrial function. J Cell

Biochem 2007;100(6):1352-69.

Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic

oxidative alterations are associated with visceral adiposity

and liver steatosis in patients with metabolic syndrome. J Nutr

;136(12):3022-6.

Armutcu F, Ataymen M, Atmaca H, Gurel A. Oxidative stress markers,

C-reactive protein and heat shock protein 70 levels in subjects with

metabolic syndrome. Clin Chem Lab Med 2008;46(6):785-90.

Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the

metabolic syndrome: An update on antioxidant therapies. Curr Pharm

Des 2013;19(27):4806-17.

Asian J Pharm Clin Res, Vol 9, Issue 1, 2016, 47-52

Kesh et al.

Chalasani N. Statins and hepatotoxicity: Focus on patients with fatty

liver. Hepatology 2005;41(4):690-5.

Kesh SB, Sikder K, Manna K, Das DK, Khan A, Das N, et al. Promising

role of ferulic acid, atorvastatin and their combination in ameliorating

high fat diet-induced stress in mice. Life Sci 2013;92(17-19):938-49.

Milagro FI, Campión J, Martínez JA. Weight gain induced by highfat

feeding

involves

increased

liver

oxidative

stress.

Obesity (Silver

Spring)

;14(7):1118-23.

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression

of tumor necrosis factor-alpha: Direct role in obesity-linked insulin

resistance. Science 1993;259(5091):87-91.

Baker RG, Hayden MS, Ghosh S. NF-?B, inflammation, and metabolic

disease. Cell Metab 2011;13(1):11-22.

Jaskiewicz K, Rzepko R, Sledzinski Z. Fibrogenesis in fatty liver

associated with obesity and diabetes mellitus type 2. Dig Dis Sci

;53(3):785-8.

Leclercq IA. Pathogenesis of steatohepatitis: Insights from the study of

animal models. Acta Gastroenterol Belg 2007;70(1):25-31.

Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsioninduced

rat

model

of

nonalcoholic steatohepatitis.

Life

Sci

;79:1100-7.

Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL,

et al. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates

ApoE-mediated atherosclerosis in mice. PLoS One 2008;3(11):e3791.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic

inflammation in fat plays a crucial role in the development of obesityrelated

insulin resistance. J

Clin

Invest 2003;112(12):1821-30.

Dandona P, Aljada A, Chaudhuri A, Mohanty P, Rajesh G. A novel view

of metabolic syndrome. Metab Syndr Relat Disord 2004;2(1):2-8.

Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome.

Life Sci 2009;84(21-22):705-12.

Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang DY, Wang A, et al.

Reversal of diet-induced hepatic steatosis and hepatic insulin resistance

by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1

and 2. J Clin Invest 2006;116(3):817-24.

Day CP, James OF. Steatohepatitis: A tale of two hits�

Gastroenterology 1998;114(4):842-5.

Anderson N, Borlak J. Molecular mechanisms and therapeutic targets

in steatosis and steatohepatitis. Pharmacol Rev 2008;60(3):311-57.

Kojima H, Sakurai S, Uemura M, Fukui H, Morimoto H, Tamagawa Y.

Mitochondrial abnormality and oxidative stress in nonalcoholic

steatohepatitis. Alcohol Clin Exp Res 2007;31 Suppl 1:S61-6.

Han JW, Zhan XR, Li XY, Xia B, Wang YY, Zhang J, et al. Impaired

PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats.

World J Gastroenterol 2010;16(48):6111-8.

Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased

apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats

is associated with c-Jun NH2-terminal kinase activation and elevated

proapoptotic Bax. J Nutr 2008;138(10):1866-71.

Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free

radicals and oxidative stress in NAFLD/NASH. Free Radic Res

;47(11):869-80.

Hardie DG. AMPK: A key regulator of energy balance in the single cell

and the whole organism. Int J Obes (Lond) 2008;32 Suppl 4:S7-12.

Hwang JT, Kwon DY, Yoon SH. AMP-activated protein kinase:

A potential target for the diseases prevention by natural occurring

polyphenols. N Biotechnol 2009;26(1-2):17-22.

Lindholm CR, Ertel RL, Bauwens JD, Schmuck EG, Mulligan JD,

Saupe KW. A high-fat diet decreases AMPK activity in multiple tissues

in the absence of hyperglycemia or systemic inflammation in rats.

J Physiol Biochem 2013;69(2):165-75.

Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB.

Diet-induced obesity alters AMP kinase activity in hypothalamus and

skeletal muscle. J Biol Chem 2006;281(28):18933-41.

Richter EA, Ruderman NB. AMPK and the biochemistry of

exercise: Implications for human health and disease. Biochem J

;418(2):261-75.

Rojas J, Arraiz N, Aguirre M, Velasco M, Bermúdez V. AMPK as

Target for Intervention in Childhood and Adolescent Obesity. J Obes

;2011:252817.

Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, et al. AMPKalpha2

deletion causes aberrant expression and activation of NAD(P)H

oxidase and consequent endothelial dysfunction in vivo: Role of 26S

proteasomes. Circ Res 2010;106(6):1117-28.

Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, et al. Activation

of the AMPK-FOXO3 pathway reduces fatty acid-induced increase

in intracellular reactive oxygen species by upregulating thioredoxin.

Diabetes 2009;58(10):2246-57.

Xie Z, Zhang J, Wu J, Viollet B, Zou MH. Upregulation of

mitochondrial uncoupling protein-2 by the AMP-activated protein

kinase in endothelial cells attenuates oxidative stress in diabetes.

Diabetes 2008;57(12):3222-30.

Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT.

Hyperglycemia promotes oxidative stress through inhibition of

thioredoxin function by thioredoxin-interacting protein. J Biol Chem

;279(29):30369-74.

Mandl J, Mészáros T, Bánhegyi G, Hunyady L, Csala M. Endoplasmic

reticulum: Nutrient sensor in physiology and pathology. Trends

Endocrinol Metab 2009;20(4):194-201.

Schröder M, Kaufman RJ. The mammalian unfolded protein response.

Annu Rev Biochem 2005;74:739-89.

Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory

basis of metabolic disease. Cell 2010;140(6):900-17.

Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER

stress in Alzheimer’s disease: A novel neuronal trigger for inflammation

and Alzheimer’s pathology. J Neuroinflammation 2009;6:41.

Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the

inflammatory response. Nature 2008;454(7203):455-62.

Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation

of AMP-activated protein kinase inhibits oxidized LDL-triggered

endoplasmic reticulum stress in vivo. Diabetes 2010;59(6):1386-96.

Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, et al.

AMP-activated protein kinase protects cardiomyocytes against hypoxic

injury through attenuation of endoplasmic reticulum stress. Mol Cell

Biol 2005;25(21):9554-75.

Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase

inhibits NF-?B signaling and inflammation: Impact on healthspan and

lifespan. J Mol Med (Berl) 2011;89(7):667-76.

Published

01-01-2016

How to Cite

Kesh, S. B., D. Sarkar, and K. Manna. “HIGH-FAT DIET-INDUCED OXIDATIVE STRESS AND ITS IMPACT ON METABOLIC SYNDROME: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 1, Jan. 2016, pp. 47-52, https://journals.innovareacademics.in/index.php/ajpcr/article/view/8915.

Issue

Section

Review Article(s)