METALLOPROTEIN PARAMETERS IN MOLECULAR DYNAMICS SIMULATION FOR AMBER, CHARMM, GROMACS, AND NAMD: A SYSTEMATIC REVIEW

Authors

  • PURNAWAN PONTANA PUTRA Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0000-0001-9466-4569
  • NAJMIATUL FITRIA Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0000-0002-3255-1961
  • AIYI ASNAWI Faculty of Pharmacy, Bhakti Kencana University, Bandung-40614, Indonesia https://orcid.org/0000-0002-8179-0520
  • AKMAL DJAMAAN Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51513

Abstract

Objective: The selection of appropriate metal parameters for molecular dynamics simulations is a significant challenge. Therefore, this review aims to provide in-depth insights valuable for the optimization of parameter selection in the context of chemical simulations.

Methods: A total of 550 scientific articles were collected from Pubmed and ScienceDirect databases from 2009 to 2024, resulting in the inclusion of 60 full studies for review. The selection process of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was utilized, enabling the conduction of an initial screening of articles by use of the Rayyan web-based application.

Results: This study found that the modeling and parameterization of metal proteins were categorized into Bonded and Non-Bonded Models. The Bonded Model incorporates MCPB, a Python-based software that facilitates parameter construction for over 80 metal ions and force fields in molecular dynamics simulations. The Non-Bonded Model evaluates metals in proteins, such as zinc, nickel, magnesium, cobalt, iron, and cadmium by using AMBER force field and the Seminario method. The 12-6 Lennard-Jones (LJ) non-bonded model is suitable for divalent, trivalent, and tetravalent metals, with Zinc parameters being compared for accuracy. Additionally, the force fields suitable for modeling unbound metal proteins include AMBER FF19SB, FF14SB, ff9X, CHARMM36, CHARMM22, CHARMM27, and CHARMM-Metal.

Conclusion: This study found that the modeling and parameterization of metal proteins were categorized into Bonded and Non-Bonded Models. Molecular Dynamics (MD) simulations can be conducted using various methods, such as classical molecular dynamics, Umbrella Sampling, Quantum Mechanics-Discrete Molecular Dynamics (QM/DMD), Stochastic Boundary Molecular Dynamics (SBMD), Steered Molecular Dynamics (SMD), Gaussian accelerated molecular dynamics (GaMD) and Random Acceleration Molecular Dynamics (RAMD).

Downloads

Download data is not yet available.

References

Li P, Song LF, Merz KM. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B. 2015;119(3):883–95.

Zhang Y, Zheng J. Bioinformatics of metalloproteins and metalloproteomes. Molecules. 2020;25(15):1–23.

Chalkley MJ, Mann SI, DeGrado WF. De novo metalloprotein design. Nat Rev Chem. 2022;6(1):31–50.

Vidossich P, Magistrato A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules. 2014;4(3):616–45.

Raut K, Kothawade S, Pande V, Bole S, Netane S, Autade K, Joshi A. Design of Potent Anticancer Molecules Comprising Pyrazolyl-Thiazolinone Analogs Using Molecular Modelling Studies for Pharmacophore Optimization. Asian J Pharm Clin Res. 2023;16(8):84–93.

Dinnimath BM, Gowda P, Naik A. Development of Organometallic Compounds of Schiff Bases With Diverse Applications. Int J Pharm Pharm Sci. 2023;1–15.

Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput. 2023;19(20):7056–76.

Rodzik A, Pomastowski P, Sagandykova GN, Buszewski B. Interactions of whey proteins with metal ions. Int J Mol Sci. 2020;21(6).

Li P, Merz KM. Metal Ion Modeling Using Classical Mechanics. Chem Rev. 2017;117(3):1564–686.

Iqhrammullah M, Rizki DR, Purnama A, Duta TF, Harapan H, Idroes R, Ginting B. Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review. Sci Pharm. 2023;91(1).

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1).

Li P, Merz KM. MCPB.py: A Python Based Metal Center Parameter Builder. J Chem Inf Model. 2016;56(4):599–604.

Case DA, Aktulga HM, K. Belfon IY, Ben-Shalom, J.T. Berryman SR, Brozell, D.S. Cerutti, T.E. Cheatham, III, G.A. Cisneros VWD, Cruzeiro TA, Darden, N. Forouzesh, G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, S. Izad and PAK. Amber 2023. Univ California, San Fr. 2023;

Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro J V., Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé L V., Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153(4).

Chebon-Bore L, Sanyanga TA, Manyumwa CV, Khairallah A, Bishop ÖT. Decoding the molecular effects of atovaquone linked resistant mutations on plasmodium falciparum cytb-isp complex in the phospholipid bilayer membrane. Int J Mol Sci. 2021;22(4):1–32.

Lee YT, Wilson RF, Rupniewski I, Goodin DB. P450cam visits an open conformation in the absence of substrate. Biochemistry. 2010;49(16):3412–9.

Aghaie-Kheyrabadi F, Shareghi B, Farhadian S. Molecular interaction between cypermethrin and myoglobin: Spectroscopy and molecular dynamics simulation analysis. J Mol Liq. 2024;395.

Eshtiwi AA, Rathbone DL. A modified bonded model approach for molecular dynamics simulations of New Delhi Metallo-β-lactamase. J Mol Graph Model. 2023;121.

Ginovska-Pangovska B, Ho MH, Linehan JC, Cheng Y, Dupuis M, Raugei S, Shaw WJ. Molecular dynamics study of the proposed proton transport pathways in [FeFe]-hydrogenase. Biochim Biophys Acta - Bioenerg [Internet]. 2014;1837(1):131–8. Available from: http://dx.doi.org/10.1016/j.bbabio.2013.08.004

Chakravorty DK, Wang B, Lee CW, Guerra AJ, Giedroc DP, Merz KM. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods. J Biomol NMR. 2013;56(2):125–37.

Hollingsworth SA, Poulos TL. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts. Protein Sci. 2015;24(1):49–57.

Chuo SW, Wang LP, Britt RD, Goodin DB. An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin. Biochemistry. 2019;58(18):2353–61.

Zou Y, Hu Y, Ge S, Zheng Y, Li Y, Liu W, Guo W, Zhang Y, Xu Q, Lai Y. Effective Virtual Screening Strategy toward heme-containing proteins: Identification of novel IDO1 inhibitors. Eur J Med Chem. 2019;184.

Wang Z, Shaik S, Wang B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450TT. J Am Chem Soc. 2021;143(2):1005–16.

Wu Z, Duan H, Cheng Y, Guo D, Peng L, Hu Y, Hu J, Luo T. A novel ligand swing-mediated active site coordination change of human apurinic/apyrimidinic endonuclease 1: A potential cytotoxic mechanism of nickel ion in the base excision repair. Chem Phys. 2022;555.

Haghshenas H, Tavakol H, Kaviani B, Mohammadnezhad G. AMBER Force Field Parameters for Cobalt-Containing Biological Systems: A Systematic Derivation Study. J Phys Chem B. 2020;124(5):777–87.

Sparta M, Shirvanyants D, Ding F, Dokholyan N V., Alexandrova AN. Hybrid dynamics simulation engine for metalloproteins. Biophys J. 2012;103(4):767–76.

Wu R, Xie D, Du J. The binding pattern of ferric iron and iron-binding protein in Botrytis cinerea. Comput Biol Med. 2024;178.

Wang J, Chen J, Tang X, Li Y, Zhang R, Zhu L, Sun Y, Zhang Q, Wang W. Catalytic Mechanism for 2,3-Dihydroxybiphenyl Ring Cleavage by Nonheme Extradiol Dioxygenases BphC: Insights from QM/MM Analysis. J Phys Chem B. 2019;123(10):2244–53.

Singh AK, Pomorski A, Wu S, Peris-Díaz MD, Czepczyńska-Krȩzel H, Krȩzel A. The connection of α-And β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties. Metallomics. 2023;15(6).

Pietra F. New Vistas on the Recruiting of Ferrous Iron and Dioxygen by Ferritins: A Case Study of the Escherichia coli 24-mer Ferritin by All-Atom Molecular Dynamics in Aqueous Medium. Chem Biodivers. 2018;15(8).

Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J Chem Theory Comput. 2010;6(9):2935–47.

AMBER parameter database [Internet]. The University of Manchester: Manchester, U.K. Available from: http://research.bmh.manchester.ac.uk/bryce/amber

Dupradeau FY, Cézard C, Lelong R, Stanislawiak É, Pêcher J, Delepine JC, Cieplak P. R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries. Nucleic Acids Res. 2008;36(SUPPL. 1).

Donati G, D’Amore VM, Russomanno P, Cerofolini L, Amato J, Marzano S, Salobehaj M, Rizzo D, Assoni G, Carotenuto A, La Pietra V, Arosio D, Seneci P, Fragai M, Brancaccio D, Di Leva FS, Marinelli L. Theoretical and experimental studies on the interaction of biphenyl ligands with human and murine PD-L1: Up-to-date clues for drug design. Comput Struct Biotechnol J. 2023;21:3355–68.

He Y, Jiang Z, Zeng M, Cao S, Wu N, Liu X. Unraveling potential mechanism of different metal ions effect on anammox through big data analysis , molecular docking and molecular dynamics simulation. J Environ Manage [Internet]. 2024;352(November 2023):120092. Available from: https://doi.org/10.1016/j.jenvman.2024.120092

Li P, Roberts BP, Chakravorty DK, Merz KM. Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput. 2013;9(6):2733–48.

Singh G, Tripathi S, Shanker K, Sharma A. Cadmium-induced conformational changes in type 2 metallothionein of medicinal plant Coptis japonica: insights from molecular dynamics studies of apo, partially and fully metalated forms. J Biomol Struct Dyn. 2019;37(6):1520–33.

Popelier PLA. Non-covalent interactions from a Quantum Chemical Topology perspective. J Mol Model. 2022;28(9).

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma. 2010;78(8):1950–8.

Li P, Song LF, Merz KM. Systematic parameterization of monovalent ions employing the nonbonded model. J Chem Theory Comput. 2015;11(4):1645–57.

Qiu Y, Jiang Y, Zhang Y, Zhang H. Rational Design of Nonbonded Point Charge Models for Monovalent Ions with Lennard-Jones 12–6 Potential. J Phys Chem B. 2021;125(49):13502–18.

Zhang Y, Jiang Y, Peng J, Zhang H. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential. J Chem Inf Model. 2021;61(8):4031–44.

Li Z, Song LF, Li P, Merz KM. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J Chem Theory Comput. 2020;16(7):4429–42.

Li Z, Song LF, Li P, Merz KM. Parametrization of Trivalent and Tetravalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J Chem Theory Comput. 2021;17(4):2342–54.

Atta-Fynn R, Bylaska EJ, Schenter GK, De Jong WA. Hydration shell structure and dynamics of curium(III) in aqueous solution: First principles and empirical studies. J Phys Chem A. 2011;115(18):4665–77.

Mishra L, Sundararajan M, Bandyopadhyay T. MD simulation reveals differential binding of Cm(III) and Th(IV) with serum transferrin at acidic pH. Proteins Struct Funct Bioinforma. 2021;89(2):193–206.

Panteva MT, Giambaşu GM, York DM. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg2+ ion models commonly used in biomolecular simulations. J Comput Chem. 2015;36(13):970–82.

Bazayeva M, Giachetti A, Pagliai M, Rosato A. A Comparison of Bonded and Nonbonded Zinc(II) Force Fields with NMR Data. Int J Mol Sci. 2023;24(6).

El Sayed DS, Khalil TE, Elbadawy HA. Rational and experimental investigation of antihypotensive midodrine-Fe(III) complex: Synthesis, spectroscopy, DFT, biological activity and molecular docking. J Mol Struct. 2024;1311.

Jenney FE, Wang H, George SJ, Xiong J, Guo Y, Gee LB, Marizcurrena JJ, Castro-Sowinski S, Staskiewicz A, Yoda Y, Hu MY, Tamasaku K, Nagasawa N, Li L, Matsuura H, Doukov T, Cramer SP. Temperature-dependent iron motion in extremophile rubredoxins – no need for ‘corresponding states.’ Sci Rep. 2024;14(1).

Hagras MA. Respiratory Complex III: A Bioengine with a Ligand-Triggered Electron-Tunneling Gating Mechanism. J Phys Chem B. 2024;128(4):990–1000.

Moin ST, Hofer TS, Sattar R, Ul-Haq Z. Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. Eur Biophys J. 2011;40(6):715–26.

Ryde U. The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J Comput Aided Mol Des. 1996;10(2):153–64.

Ryde U, Olsson MHM. Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem. 2001;81(5):335–47.

Treutler O, Ahlrichs R. Efficient molecular numerical integration schemes. J Chem Phys. 1995;102(1):346–54.

Kaukonen M, Söderhjelm P, Heimdal J, Ryde U. Proton Transfer at Metal Sites in Proteins Studied by Quantum Mechanical Free-Energy Perturbations. J Chem Theory Comput [Internet]. 2008 Jun 1;4(6):985–1001. Available from: https://pubs.acs.org/doi/10.1021/ct700347h

Wu J, Wen S, Zhou Y, Chao H, Shen Y. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies. J Chem Inf Model. 2016;56(12):2421–33.

Saura P, Maréchal JD, Masgrau L, Lluch JM, González-Lafont À. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: Consequences for the positional specificity of oxygenation. Phys Chem Chem Phys. 2016;18(33):23017–35.

Suardíaz R, Masgrau L, Lluch JM, González-Lafont À. Introducing mutations to modify the C13/C9 ratio in linoleic acid oxygenations catalyzed by rabbit 15-lipoxygenase: A QM/MM and MD study. ChemPhysChem. 2014;15(18):4049–54.

Xu M, He X, Zhu T, Zhang JZH. A Fragment Quantum Mechanical Method for Metalloproteins. J Chem Theory Comput. 2019;15(2):1430–9.

Sgrignani J, Magistrato A, Peraro MD, Vila AJ, Carloni P, Pierattelli R. On the active site of mononuclear B1 metallo β-lactamases: A computational study. J Comput Aided Mol Des. 2012;26(4):425–35.

Hong G, Pachter R. Inhibition of biocatalysis in [Fe-Fe] hydrogenase by oxygen: Molecular dynamics and density functional theory calculations. ACS Chem Biol. 2012;7(7):1268–75.

Ruiz MP, Aragonès AC, Camarero N, Vilhena JG, Ortega M, Zotti LA, Pérez R, Cuevas JC, Gorostiza P, Díez-Pérez I. Bioengineering a Single-Protein Junction. J Am Chem Soc. 2017;139(43):15337–46.

Neese F, Wennmohs F, Hansen A, Becker U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree-Fock exchange. Chem Phys. 2009;356(1–3):98–109.

Bannwarth C, Ehlert S, Grimme S. GFN2-xTB - An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J Chem Theory Comput. 2019;15(3):1652–71.

Yan Z, Li X, Chung LW. Multiscale Quantum Refinement Approaches for Metalloproteins. J Chem Theory Comput. 2021;17(6):3783–96.

Jia L, Wang C, Zhang S, Yuan Z, Lu F, Liu Y. Structure-guided protein engineering to reconstruct the biocatalyst properties for efficient l-3,4-dihydroxyphenylalanine production. Chem Eng J [Internet]. 2023;469:143894. Available from: https://www.sciencedirect.com/science/article/pii/S1385894723026256

Mera-Adasme R, Sadeghian K, Sundholm D, Ochsenfeld C. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins. J Phys Chem B. 2014;118(46):13106–11.

Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys. 2023;25(33):21816–35.

Shahrokh K, Orendt A, Yost GS, Cheatham TE. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J Comput Chem. 2012;33(2):119–33.

Ugur I, Chandrasekhar P. Proton relay network in P450cam formed upon docking of putidaredoxin. Proteins Struct Funct Bioinforma. 2020;88(4):558–72.

Carvalho ATP, Teixeira AFS, Ramos MJ. Parameters for molecular dynamics simulations of iron-sulfur proteins. J Comput Chem. 2013;34(18):1540–8.

Carvalho ATP, Swart M. Electronic structure investigation and parametrization of biologically relevant iron-sulfur clusters. J Chem Inf Model. 2014;54(2):613–20.

Ngo V, Da Silva MC, Kubillus M, Li H, Roux B, Elstner M, Cui Q, Salahub DR, Noskov SY. Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins. J Chem Theory Comput. 2015;11(10):4992–5001.

Tolbatov I, Re N, Coletti C, Marrone A. Determinants of the Lead(II) Affinity in pbrR Protein: A Computational Study. Inorg Chem. 2020;59(1):790–800.

Litman J, Thiel AC, Schnieders MJ. Scalable Indirect Free Energy Method Applied to Divalent Cation-Metalloprotein Binding. J Chem Theory Comput. 2019;15(8):4602–14.

Rodríguez‐Guerra Pedregal J, Sciortino G, Guasp J, Municoy M, Maréchal J. GaudiMM: A modular multi‐objective platform for molecular modeling. J Comput Chem. 2017;38(24):2118–26.

Sánchez-Aparicio JE, Sciortino G, Herrmannsdoerfer DV, Chueca PO, Pedregal JRG, Maréchal JD. Gpathfinder: Identification of ligand-binding pathways by a multi-objective genetic algorithm. Int J Mol Sci. 2019;20(13).

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins Struct Funct Genet. 2003;52(4):609–23.

Sánchez-Aparicio JE, Sciortino G, Mates-Torres E, Lledós A, Maréchal JD. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh2 cyclopropanase. Faraday Discuss. 2021;234:349–66.

Siegbahn PEM, Blomberg MRA. Density functional theory of biologically relevant metal centers. Annu Rev Phys Chem. 1999;50:221–49.

Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem. 2013;113(18):2110–42.

Tolbatov I, Re N, Coletti C, Marrone A. An Insight on the Gold(I) Affinity of golB Protein via Multilevel Computational Approaches. Inorg Chem. 2019;58(16):11091–9.

Li YL, Mei Y, Zhang DW, Xie DQ, Zhang JZH. Structure and dynamics of a dizinc metalloprotein: Effect of charge transfer and polarization. J Phys Chem B. 2011;115(33):10154–62.

Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Sprynskyy M, Buszewski B. Study on silver ions binding to β-lactoglobulin. Biophys Chem. 2022;291(April).

Wang G, Kincaid B, Zhou H, Annaberdiyev A, Bennett MC, Krogel JT, Mitas L. A new generation of effective core potentials from correlated and spin-orbit calculations: Selected heavy elements. J Chem Phys. 2022;157(5).

Yang ZZ, Wang JJ, Zhao DX. Valence state parameters of all transition metal atoms in metalloproteins - Development of ABEEMσπ fluctuating charge force field. J Comput Chem. 2014;35(23):1690–706.

Pomastowski P, Sprynskyy M, Žuvela P, Rafińska K, Milanowski M, Liu JJ, Yi M, Buszewski B. Silver-Lactoferrin Nanocomplexes as a Potent Antimicrobial Agent. J Am Chem Soc. 2016;138(25):7899–909.

Joy A, Biswas R. Role of Metal Cofactor in Enhanced Thermal Stability of Azurin. J Phys Chem B. 2023;127(20):4374–85.

Sheikhzadeh A, Safaei M, Fadaei Naeini V, Baghani M, Foroutan M, Baniassadi M. Multiscale modeling of unfolding and bond dissociation of rubredoxin metalloprotein. J Mol Graph Model [Internet]. 2024;129(September 2023):108749. Available from: https://doi.org/10.1016/j.jmgm.2024.108749

Bhattarai A, Miao Y. Gaussian accelerated molecular dynamics for elucidation of drug pathways. Expert Opin Drug Discov. 2018;13(11):1055–65.

Published

25-07-2024

How to Cite

PUTRA, P. P., FITRIA, N., ASNAWI, A., & DJAMAAN, A. (2024). METALLOPROTEIN PARAMETERS IN MOLECULAR DYNAMICS SIMULATION FOR AMBER, CHARMM, GROMACS, AND NAMD: A SYSTEMATIC REVIEW. International Journal of Applied Pharmaceutics, 16(5). https://doi.org/10.22159/ijap.2024v16i5.51513

Issue

Section

Review Article(s)