INFLUENCE OF POLYMERIZATION FACTORS AND VARYING SHADE COMPOSITIONS OF BULK FILL RESIN-BASED NANOHYBRID COMPOSITES ON UNDER-SURFACE TEMPERATURE

Authors

  • SEFTY ARYANI HARAHAP Department of Dental Materials and Technology, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-1717-3798
  • ASTRID YUDHIT Department of Dental Materials and Technology, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0003-2011-6900
  • NASPATI HARAHAP Dental Student, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • GRACIELLA CANDRA Dental Student, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s2.09

Keywords:

Under-surface temperature, Bulk fill resin-based nanohybrid composite, Polymerization factors, Shade

Abstract

Objective: This study aimed to evaluate the influence of polymerization factors and varying shade compositions of bulk-fill resin-based nanohybrid composites on under-surface temperature.

Methods: A total of 120 bulk-fill resin-based nanohybrid composite specimens (n=10) consisting of IVW (whiter), IVB (medium), and IVA (darker) shades were inserted in one bulk into a polyvinyl siloxane mold with a diameter of 5 mm and a thickness of 4 mm, divided into 2 subgroups of irradiation times (20 s and 30 s) and 2 subgroups of light curing sources (LED and QTH). When the specimen was polymerized, the under-surface temperature was measured with a K-type digital thermocouple. Data analyzed using Three-Way ANOVA and Tukey HSD Post Hoc tests.

Results: It showed significantly different QTHs that generated lower under-surface temperature than LEDs (P<0.05); whiter shade generated the highest temperature among all. However, there was no significant difference between 20 s and 30 s irradiation time (P>0.05).

Conclusion: It was concluded that the under-surface temperature generated by polymerization factors and varying shade compositions of bulk fill resin-based nanohybrid composites in this study was still acceptable and safe for dental pulp tissue.

Downloads

Download data is not yet available.

References

Triaminingsih S, Eriwati YK, Harahap SA, Agustina RG. Influence of curing time and color shade on diametral tensile strength of bulk-fill composite resins. J Int Dent Med Res. 2018;11(3):1636-9.

Eriwati YK, Khasanah KN, Harahap SA, Triaminingsih S. Effect of different light-curing sources on diametral tensile strength of bulk-fill composite resins. J Int Dent Med Res. 2018;11(2):491-4.

Harahap SA, Eriwati YL, Triaminingsih S. Effects of extended curing time on the diametral tensile strength, degree of conversion, and monomer release of bulk-fill composite resins. J Phys: Conf Ser. 2018;1073(5):1-7. doi: 10.1088/1742-6596/1073/5/052020.

FF, Ar D, ZH. The effect of bulk depth and irradiation time on the surface hardness and degree of cure of bulk-fill composites. J Dent Biomater. 2016;3(3):284-91. PMID 28959755.

Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015;31(7):e141-9. doi: 10.1016/j.dental.2015.04.008, PMID 25979794.

Herda E, Sharfina L, Andjani AN, Damiyanti M, Irawan B. Light-curing distance and resin thickness effects on the short fiber-reinforced resin composite depth of cure. Int J Appl Pharm. 2017;9(2):110-3.

Herda E, Ninda NS, Damiyanti M. Post-cure’s effect on the depth of cure of a short fiber-reinforced resin composite. Int J App Pharm. 2017;9(2):158-60. doi: 10.22159/ijap.2017.v9s2.43.

Masulili BI, Suprastiwi E, Artiningsih DANP, Novista C. Comparison of volumetric shrinkage of composite resin nanoceramic and nanofiller. Int J App Pharm. 2020;12(2):1-3. doi: 10.22159/ijap.2020.v12s2.OP-02.

Dionysopoulos D, Tolidis K, Gerasimou P. The effect of composition, temperature and post-irradiation curing of bulk fill resin composites on polymerization efficiency. Mat Res. 2016;19(2):466-73. doi: 10.1590/1980-5373-MR-2015-0614.

Anusavice KJ. Phillips’ science of dental materials. 13th ed. Amsterdam: Elsevier; 2021.

Sakaguchi RL, Ferracane J, Powers JM. Craig’s restorative dental materials. 14th ed. Amsterdam: Elsevier; 2019.

Andreatta LML, Furuse AY, Prakki A, Bombonatti JFS, Mondelli RFL. Pulp chamber heating: an in vitro study evaluating different light sources and resin composite layers. Braz Dent J. 2016;27(6):675-80. doi: 10.1590/0103-6440201600328, PMID 27982178.

Kim RJY, Lee IB, Yoo JY, Park SJ, Kim SY, Yi YA. Real-time analysis of temperature changes in composite increments and pulp chamber during photopolymerization. BioMed Res Int. 2015;2015:923808. doi: 10.1155/2015/923808, PMID 26557716.

Hargreave KM, Breman LH. Cohen’s Pathways of the pulp. 11th ed. Amsterdam: Elsevier; 2016.

AlShaafi MM. Factors affecting polymerization of resin-based composites: a literature review. Saudi Dent J. 2017;29(2):48-58. doi: 10.1016/j.sdentj.2017.01.002, PMID 28490843.

Balestrino A, Verissimo C, Tantbirojn D, Garcia Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29(4):234-2240. PMID 29178754.

Hanum UA, Herda E, Indrani DJ. The effect of light-cured nanofilled composite resin shades on their under-surface temperature. J Phys: Conf Ser. 2017;884(1):8-11. doi: 10.1088/1742-6596/884/1/012076.

Ilday NO, Sagsoz O, Karatas O, Bayindir YZ, Celik N. Temperature changes caused by light curing of fiber-reinforced composite resins. J Conserv Dent. 2015;18(3):223-6. doi: 10.4103/0972-0707.157258, PMID 26069409.

Koumpia EK, Dionysopoulus D, Koumpia EG. Pulp chamber temperature rise during resin composite polymerization. Balk Stomatol OF. 2011;15:150-4.

Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light-curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8(1):137-51. doi: 10.1080/26415275.2021.1979981, PMID 34622209.

Dias M, Choi JJE, Uy CE, Ramani RS, Ganjigatti R, Waddell JN. Real-time pulp temperature change at different tooth sites during fabrication of temporary resin crowns. Heliyon. 2019;5(12):e02971. doi: 10.1016/j.heliyon.2019.e02971, PMID 31872130.

Dikova T, Maximov J, Todorov V, Georgiev G, Panov V. Optimization of photopolymerization process of dental composites. Processes. 2021;9(5):1-14. doi: 10.3390/pr9050779.

Hyun HK, Christoferson CK, Pfeifer CS, Felix C, Ferracane JL. Effect of shade, opacity and layer thickness on light transmission through a nano-hybrid dental composite during curing. J Esthet Restor Dent. 2017;29(5):362-7. doi: 10.1111/jerd.12311, PMID 28628735.

Mousavinasab SM, Salehi A, Salehi N. Effect of composite shade, curing time and mode on temperature rise of silorane and methacrylate-based composite resin. Caspian J Dent Res. 2016;5:50-8.

Armellin E, Bovesecchi G, Coppa P, Pasquantonio G, Cerroni L. LED curing lights and temperature changes in different tooth sites. BioMed Res Int. 2016;2016:1894672. doi: 10.1155/2016/1894672, PMID 27195282.

Published

27-05-2024

How to Cite

HARAHAP, S. A., YUDHIT, A., HARAHAP, N., & CANDRA, G. (2024). INFLUENCE OF POLYMERIZATION FACTORS AND VARYING SHADE COMPOSITIONS OF BULK FILL RESIN-BASED NANOHYBRID COMPOSITES ON UNDER-SURFACE TEMPERATURE. International Journal of Applied Pharmaceutics, 16(2), 39–42. https://doi.org/10.22159/ijap.2024.v16s2.09

Issue

Section

Original Article(s)

Most read articles by the same author(s)