INFLUENCE OF POLYMERIZATION FACTORS AND VARYING SHADE COMPOSITIONS OF BULK FILL RESIN-BASED NANOHYBRID COMPOSITES ON UNDER-SURFACE TEMPERATURE

##article.authors##

  • SEFTY ARYANI HARAHAP Department of Dental Materials and Technology, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-1717-3798
  • ASTRID YUDHIT Department of Dental Materials and Technology, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0003-2011-6900
  • NASPATI HARAHAP Dental Student, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • GRACIELLA CANDRA Dental Student, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia

##semicolon##

Under-surface temperature##common.commaListSeparator## Bulk fill resin-based nanohybrid composite##common.commaListSeparator## Polymerization factors##common.commaListSeparator## Shade

##article.abstract##

Objective: This study aimed to evaluate the influence of polymerization factors and varying shade compositions of bulk-fill resin-based nanohybrid composites on under-surface temperature.

Methods: A total of 120 bulk-fill resin-based nanohybrid composite specimens (n=10) consisting of IVW (whiter), IVB (medium), and IVA (darker) shades were inserted in one bulk into a polyvinyl siloxane mold with a diameter of 5 mm and a thickness of 4 mm, divided into 2 subgroups of irradiation times (20 s and 30 s) and 2 subgroups of light curing sources (LED and QTH). When the specimen was polymerized, the under-surface temperature was measured with a K-type digital thermocouple. Data analyzed using Three-Way ANOVA and Tukey HSD Post Hoc tests.

Results: It showed significantly different QTHs that generated lower under-surface temperature than LEDs (P<0.05); whiter shade generated the highest temperature among all. However, there was no significant difference between 20 s and 30 s irradiation time (P>0.05).

Conclusion: It was concluded that the under-surface temperature generated by polymerization factors and varying shade compositions of bulk fill resin-based nanohybrid composites in this study was still acceptable and safe for dental pulp tissue.

##submission.citations##

Triaminingsih S, Eriwati YK, Harahap SA, Agustina RG. Influence of curing time and color shade on diametral tensile strength of bulk-fill composite resins. J Int Dent Med Res. 2018;11(3):1636-9.

Eriwati YK, Khasanah KN, Harahap SA, Triaminingsih S. Effect of different light-curing sources on diametral tensile strength of bulk-fill composite resins. J Int Dent Med Res. 2018;11(2):491-4.

Harahap SA, Eriwati YL, Triaminingsih S. Effects of extended curing time on the diametral tensile strength, degree of conversion, and monomer release of bulk-fill composite resins. J Phys: Conf Ser. 2018;1073(5):1-7. doi: 10.1088/1742-6596/1073/5/052020.

FF, Ar D, ZH. The effect of bulk depth and irradiation time on the surface hardness and degree of cure of bulk-fill composites. J Dent Biomater. 2016;3(3):284-91. PMID 28959755.

Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015;31(7):e141-9. doi: 10.1016/j.dental.2015.04.008, PMID 25979794.

Herda E, Sharfina L, Andjani AN, Damiyanti M, Irawan B. Light-curing distance and resin thickness effects on the short fiber-reinforced resin composite depth of cure. Int J Appl Pharm. 2017;9(2):110-3.

Herda E, Ninda NS, Damiyanti M. Post-cure’s effect on the depth of cure of a short fiber-reinforced resin composite. Int J App Pharm. 2017;9(2):158-60. doi: 10.22159/ijap.2017.v9s2.43.

Masulili BI, Suprastiwi E, Artiningsih DANP, Novista C. Comparison of volumetric shrinkage of composite resin nanoceramic and nanofiller. Int J App Pharm. 2020;12(2):1-3. doi: 10.22159/ijap.2020.v12s2.OP-02.

Dionysopoulos D, Tolidis K, Gerasimou P. The effect of composition, temperature and post-irradiation curing of bulk fill resin composites on polymerization efficiency. Mat Res. 2016;19(2):466-73. doi: 10.1590/1980-5373-MR-2015-0614.

Anusavice KJ. Phillips’ science of dental materials. 13th ed. Amsterdam: Elsevier; 2021.

Sakaguchi RL, Ferracane J, Powers JM. Craig’s restorative dental materials. 14th ed. Amsterdam: Elsevier; 2019.

Andreatta LML, Furuse AY, Prakki A, Bombonatti JFS, Mondelli RFL. Pulp chamber heating: an in vitro study evaluating different light sources and resin composite layers. Braz Dent J. 2016;27(6):675-80. doi: 10.1590/0103-6440201600328, PMID 27982178.

Kim RJY, Lee IB, Yoo JY, Park SJ, Kim SY, Yi YA. Real-time analysis of temperature changes in composite increments and pulp chamber during photopolymerization. BioMed Res Int. 2015;2015:923808. doi: 10.1155/2015/923808, PMID 26557716.

Hargreave KM, Breman LH. Cohen’s Pathways of the pulp. 11th ed. Amsterdam: Elsevier; 2016.

AlShaafi MM. Factors affecting polymerization of resin-based composites: a literature review. Saudi Dent J. 2017;29(2):48-58. doi: 10.1016/j.sdentj.2017.01.002, PMID 28490843.

Balestrino A, Verissimo C, Tantbirojn D, Garcia Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29(4):234-2240. PMID 29178754.

Hanum UA, Herda E, Indrani DJ. The effect of light-cured nanofilled composite resin shades on their under-surface temperature. J Phys: Conf Ser. 2017;884(1):8-11. doi: 10.1088/1742-6596/884/1/012076.

Ilday NO, Sagsoz O, Karatas O, Bayindir YZ, Celik N. Temperature changes caused by light curing of fiber-reinforced composite resins. J Conserv Dent. 2015;18(3):223-6. doi: 10.4103/0972-0707.157258, PMID 26069409.

Koumpia EK, Dionysopoulus D, Koumpia EG. Pulp chamber temperature rise during resin composite polymerization. Balk Stomatol OF. 2011;15:150-4.

Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light-curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8(1):137-51. doi: 10.1080/26415275.2021.1979981, PMID 34622209.

Dias M, Choi JJE, Uy CE, Ramani RS, Ganjigatti R, Waddell JN. Real-time pulp temperature change at different tooth sites during fabrication of temporary resin crowns. Heliyon. 2019;5(12):e02971. doi: 10.1016/j.heliyon.2019.e02971, PMID 31872130.

Dikova T, Maximov J, Todorov V, Georgiev G, Panov V. Optimization of photopolymerization process of dental composites. Processes. 2021;9(5):1-14. doi: 10.3390/pr9050779.

Hyun HK, Christoferson CK, Pfeifer CS, Felix C, Ferracane JL. Effect of shade, opacity and layer thickness on light transmission through a nano-hybrid dental composite during curing. J Esthet Restor Dent. 2017;29(5):362-7. doi: 10.1111/jerd.12311, PMID 28628735.

Mousavinasab SM, Salehi A, Salehi N. Effect of composite shade, curing time and mode on temperature rise of silorane and methacrylate-based composite resin. Caspian J Dent Res. 2016;5:50-8.

Armellin E, Bovesecchi G, Coppa P, Pasquantonio G, Cerroni L. LED curing lights and temperature changes in different tooth sites. BioMed Res Int. 2016;2016:1894672. doi: 10.1155/2016/1894672, PMID 27195282.

##submissions.published##

27-05-2024

##issue.issue##

##section.section##

Original Article(s)