PREFORMULATION CHARACTERIZATION OF AQUEOUS EXTRACTS FROM THE LEAVES OF ANTIMALARIAL PLANTS - ARTEMISIA ANNUA L., VERNONIA AMYGDALINA DEL., AND MICROGLOSSA PYRIFOLIA (LAM.) KUNTZE

Authors

  • JIMMY R. ANGUPALE Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda. Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda https://orcid.org/0009-0009-5891-7587
  • CLEMENT O. AJAYI Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda https://orcid.org/0000-0003-4208-1489
  • JONANS TUSIIMIRE Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda https://orcid.org/0000-0002-5831-1499
  • NDIDI C. NGWULUKA Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria https://orcid.org/0000-0003-4028-2228

DOI:

https://doi.org/10.22159/ijap.2025v17i1.51758

Keywords:

Preformulation, Physicochemical parameters, Tabletability, Artemisia annua, Vernonia amygdalina, Microglossa pyrifolia

Abstract

Objective: The current study aimed at characterising relevant physical and chemical properties of antimalarial aqueous extracts from the leaves of Artemisia annua (Aa), Vernonia amygdalina (Va), and Microglossa pyrifolia (Mp) to build a solid foundation for the development of stable dosage forms.

Methods: The aqueous extracts were profiled for key antimalarial chemical markers, aqueous solubility, partition coefficient, permeability, and powder flow properties using standard procedure with modifications where applicable. The powder compaction behaviours were studied using Kawakita and tabletability models.

Results: Aa extract had 11.2 % of total flavonoids and 0.27 % of artemisinin as its antimalarial chemical markers. Va and Mp extracts contained 0.07 % and 28.5 % total terpenoids as their respective chemical markers. All the extracts exhibited high solubility and low permeability, qualifying them as class III crude drugs based on the biopharmaceutical classification system (BCS). Mp had excellent flow (angle of repose 18.9, Hausner Ratio 1.2, and Carr’s Index 13 %) while Va and Aa had passable flow, thus requiring a glidant. The powder samples underwent plastic deformation, according to the Kawakita plot. Aa also showed the highest level of tabletability, followed by Va, and lastly, Mp (Area under curves of 18.5, 9.2, and 7.8 for Aa, Va and Mp, respectively).

Conclusion: Based on their chemical and physical properties, the Aa, Va, and Mp aqueous extracts can be incorporated into stable, bioavailable, and modern herbal drug delivery systems or dosage forms.

Downloads

Download data is not yet available.

References

Kulkarni S, Sharma SB, Agrawal A. Preformulation – a foundation for formulation development. Int. J. Pharm. Chem. Sci. 2015; 5(2):403–406

Chaurasia G. A review on pharmaceutical preformulation studies in formulation. Int J Pharm Sci Res. 2016; 7(6):2313-20

Chaudhary P. Preformulation studies for Ayurveda drugs : a review. Int. Res. J. Pharm. 2019; 10(3): 16-19. https://doi.org/10.7897/2230-8407.100372

Anantha ND. Approaches to pre-formulation R and D for phytopharmaceuticals emanating from herb-based traditional Ayurvedic processes. J Ayurveda Integr Med. 2013; 4(1):4–8. DOI: 10.4103/0975-9476.109542

Gaisford S, Saunders M. Essentials of pharmaceutical preformulation. John Wiley & Sons, New Jersey; 2012.

Mbah CC, Builders PF, Akuodour GC, Kunle OO. Pharmaceutical characterization of aqueous stem bark extract of Bridelia ferruginea Benth ( Euphorbiaceae ). Trop. J. Pharm. Res. 2012; 11(4): 637–644

Harahap U, Marianne M, Yuandani Y, Laila L. Preformulation study of Pugun tano ( Curanga fel-terrae [ Lour .] Merr ) ethanolic extract granule mass in capsule as hepatoprotective drug. Open Access Maced. J. Med. Sci. 2019; 7(22): 3729–3732

Wamankar S, Gupta A, Kaur CD. Preformulation studies & phytochemical analysis of ethanolic extract of Embilica officinalis and Glycine max merrill. World. J. Pharm. Res. 2016; 4(4): 1537-1544

Palacio Y, Castro J, Bassani VL, Franco LA, Bernal C. Preformulation studies for the development of a microemulsion formulation from Ambrosia peruviana All ., with anti-inflammatory effect. Braz. J. Pharm. Sci. 2023; 59:e22505

Korukola N, Medisetti VK, Sravanam S, Sanga KR. Preformulation and formulation studies of the polyherbal syrup of hydroalcoholic extracts of Zingiber officinale and Piper nigrum. Int J Pharm Sci Rev Res. 2014; 24:251–256

Angupale JR, Tusiimire J, Ngwuluka NC. A review of efficacy and safety of Ugandan anti-malarial plants with application of RITAM score. Malar J. 2023; 22(1): 97. https://doi.org/10.1186/s12936-023-04486-6

Mazandarani M, Majidi Z, Zarghami-Moghaddam P, Abrodi M, Hemati H. Essential oil composition, total phenol, flavonoid, anthocyanin and antioxidant activities in different parts of Artemisia annua L . in two localities ( North of Iran ). J. Med. Plants By-products. 2012; 1(1):13-21

Gao S, Wang Q, Tian XH, Li HL, Shen YH, Xu XK, et al. Total sesquiterpene lactones prepared from Inula helenium L. has potentials in prevention and therapy of rheumatoid arthritis. J Ethnopharmacol. 2017; 196: 39–46

Łukowski A, Jagiełło R, Robakowski P, Adamczyk D, Karolewski P. Adaptation of a simple method to determine the total terpenoid content in needles of coniferous trees. Plant Sci. 2022; 314:111090. https://doi.org/10.1016/j.plantsci.2021.111090

Sinesio F, Moneta E, Esti M. The dynamic sensory evaluation of bitterness and pungency in virgin olive oil. Food Qual. Prefer. 2005; 16(6):557

Abdulai K, Igbeneghu OA, Orafidiya LO. The organoleptic and microbial quality of some herbal medicinal products marketed in Freetown, Sierra Leone. Afr J Tradit Complement Altern Med. 2015; 12(4): 1-8

Murikipudi V, Gupta P, Sihorkar V. Efficient throughput method for hygroscopicity classification of active and inactive pharmaceutical ingredients by water vapor sorption analysis. Pharm Dev Technol. 2013; 18(12):348–358

Kolhe RC, Chaudhari RY. Development and evaluation of antidiabetic polyherbal tablet using medicinal plants of traditional use. Int J Curr Pharm Res. 2023; 15(2):17-21

Mallick S. Rearrangement of particle and compactibility, tabletability and compressibility of pharmaceutical powder : a rational approach. J. Sci. Indu Res. 2014; 73. 51-56.

Ogwang P, Ogwal JO, Kasasa S, Ejobi F, Kabasa D, Obua C. Use of Artemisia annua L. infusion for malaria prevention: mode of action and benefits in a Ugandan community. Br J Pharm Res. 2012; 11(3): 445-453

Cai TY, Zhang YR, Ji JB, Xing J. Investigation of the component in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin via regulation of its metabolism. J Ethnopharmacol. 2017; 207:86–91

Engeu PO, Omujal F, Agwaya M, Kyakulaga H, Obua C. Variations in antimalarial components of Artemisia annua Linn from three regions of Uganda. Afr. Health Sci. 2015; 15(3): 828-34.

Bilia AR, Gabriele C, Bergonzi MC, Malgalhaes PM De, Vincieri FF. Variation in artemisinin and flavonoid content in different extracts of Artemisia annua L. Nat. Prod. Commun. 2006; 1(12). 1934578X0600101208

De Donno A, Grassi T, Idolo A, Guido M, Papadia P, Caccioppola A, et al. First-time comparison of the in vitro antimalarial activity of Artemisia annua herbal tea and artemisinin. Trans R Soc Trop Med Hyg. 2012; 106:696–700

Abay SM, Lucantoni L, Dahiya N, Dori G, Dembo EG, Esposito F et al. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar J. 2015; 14: 288. 10.1186/s12936-015-0812-2

Erasto P, Grierson DS, Afolayan AJ. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J Ethnopharmacol. 2006; 106:117–120

Djeujo FM, Stablum V, Pangrazzi E, Ragazzi E, Froldi G. Luteolin and vernodalol as bioactive compounds of leaf and root Vernonia amygdalina extracts: effects on α-glucosidase, glycation, ros, cell viability, and in silico ADMET parameters. Pharmaceutics. 2023; 15: 154. https://doi.org/10.3390/pharmaceutics15051541

Köhler I, Jenett-Siems K, Kraft C, Siems K, Abbiw D, Bienzle U, et al. Herbal remedies traditionally used against malaria in Ghana: bioassay-guided fractionation of Microglossa pyrifolia (Asteraceae). Zeitschrift fur Naturforsch - Sect C J Biosci. 2002; 57:1022–1027

Challand S, Willcox M. A clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated malaria. J Complement Altern Med. 2009; 15(11):1231–1237

de Magalhães PM, Figueira GM, de Souza JM, Ven- tura AMR, de Oliveira Ohnishi MD, da Silva DR, et al. Artemisia annua: a new version of a traditional tea under randomized, controlled clinical trial for the treatment of malaria. Adv Biosci Biotechnol. 2016; 07: 545–563

Alrushaid S, Davies NM, Anderson JE, Le T, Yáñez JA, Maayah ZH, et al. Pharmaceutical characterization of myonovin, a novel skeletal muscle regenerator: in silico, in vitro and in vivo studies. J Pharm Pharm Sci. 2018; 21(1s): 1s – 18s.

Aulton MA. Aulton’s Pharmaceutics: The design and manufacturing of medicines. 4th Ed. Churchill Livingstone Elsevier: London; 2013.

Bhal SK. Log P — Making Sense of the Value. Adv Chem Dev. 2007. www.acdlabs.com

Yang Y, Fan CM, He X, Ren K, Zhang J-K, He Y-J et al. Study on biopharmaceutics classification and oral bioavailability of a novel multikinase inhibitor NCE for cancer therapy. Int J Mol Sci. 2014; 15: 7199–7212

Chavda H V, Patel CN, Anand IS. Biopharmaceutics classification system. Syst Rev Pharm. 2010; 1(1): 10.4103/0975-8453.59514

Patel RC, Keraliya R, Jansari J, Patel MM. Application of biopharmaceutics classification system in formulation development. PhTechMed. 2013; 2(4): 334–340

Chen D. Hygroscopicity of pharmaceutical crystals. PhD Thesis, University of Minnesota; 2009.

Selbo J, Chiang PC. Absorption and physicochemical properties of the NCE. In: Tsaioun T, Kates SA (ed) ADMET Med Chem A Pract Guide, John Wiley & Sons; 2010.

WHO Annex 1: WHO guidelines on good herbal processing practices for herbal medicines. WHO Tech Rep Ser No 1010 81–152; 2018

Aparna C, Anusha M, Manisha B. Enhancement of dissolution of candesartan cilexetil. Asian J Pharm Clin Res. 2023;16(3): 148-151.

Angupale JR, Engeu PO, Okafor SI. Physical properties and compactibility of various blends of fully gelatinised and pregelatinised maize starch. Pharm Biosci J. 2020; 8(1): 35–44

Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014; 15(1): https://doi.org/10.1208/s12249-013-0036-0

Peter P, Maroš E, Roman F, Viliam H. Analysis of pharmaceutical excipient MCC Avicel PH102 using compaction equations. J. Mech. Eng. 2016; 66(1): 65–82. 10.1515/scjme-2016-0012

Jianyi Z, Chuan-Yu W, Xin P, Chuanbin W. On identification of critical material attributes for compression behaviour of pharmaceutical diluent powders. Materials. 2017; 10. 845. https://doi.org/10.3390/ma10070845.

Published

26-10-2024

How to Cite

ANGUPALE, J. R., AJAYI, C. O., TUSIIMIRE, J., & NGWULUKA, N. C. (2024). PREFORMULATION CHARACTERIZATION OF AQUEOUS EXTRACTS FROM THE LEAVES OF ANTIMALARIAL PLANTS - ARTEMISIA ANNUA L., VERNONIA AMYGDALINA DEL., AND MICROGLOSSA PYRIFOLIA (LAM.) KUNTZE. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.51758

Issue

Section

Original Article(s)