DESIGN AND OPTIMIZATION OF ACYCLOVIR LOADED SOLID LIPID NANOPARTICLES: A SUSTAINED RELEASE APPROACH
DOI:
https://doi.org/10.22159/ijap.2025v17i1.51877Keywords:
ASLN, Acyclovir, Drug delivery, Zero-order kinetics, Sustained releaseAbstract
Objective: This study aims to develop Acyclovir-Loaded Solid Lipid Nanoparticles (ASLN) prepared through homogenisation and evaluate their efficacy.
Methods: ASLN were formulated using Gelucire 43/01, Polyvinylpyrrolidone (PVP), Tween 80, and Stearic acid in varying ratios through solvent evaporation and homogenisation. Lipids and Acyclovir were melted together and then emulsified using a homogeniser. Particle size distribution was assessed by Dynamic Light Scattering (DLS), and Zeta Potential was measured using electrophoretic mobility. The cumulative drug release profile was analyzed to determine sustained release characteristics. Zero-order kinetic modelling was applied to elucidate the release mechanism, indicating diffusion rate-limited drug release. Comparative studies with marketed Acyclovir formulations were conducted to assess efficacy and performance.
Results: All formulations exhibited satisfactory characteristics: Particle size of 185.6 ± 4.28 nm, Zeta potential of -24.15 ± 5.43 mV, Polydispersity Index of 0.192 ± 3.11, and Drug Entrapment Efficiency of 77.06 ± 4.3%. In-vitro release studies of ASLN formulation F12 showed prolonged drug release (90.88% cumulative release by the 8th hour), in sustained drug availability. Comparative studies highlighted the efficacy of ASLN compared to commercial acyclovir products. The kinetic analysis confirmed zero-order kinetics and diffusion rate-limited drug release for all formulations.
Downloads
References
Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR. PEGylated lipid polymeric nanoparticle-encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 2020;21(7):285. doi: 10.1208/s12249-020-01810-0, PMID: 33057878.
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release. 2021;331:30-44. doi: 10.1016/j.jconrel.2021.01.017, PMID: 33450319.
Hassan H, Bello RO, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Acyclovir-loaded solid lipid nanoparticles: Optimization, characterization, and evaluation of its pharmacokinetic profile. Nanomaterials (Basel). 2020;10(9):1785. doi: 10.3390/nano10091785, PMID: 32916823.
Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Su JST, Tan CL, Chin WY, Yip KY. Advancement on sustained antiviral ocular drug delivery for herpes simplex virus keratitis: Recent update on potential investigation. Pharmaceutics. 2020;13(1):1. doi: 10.3390/pharmaceutics13010001, PMID: 33374925.
Kondel R, Shafiq N, Kaur IP, Singh MP, Pandey AK, Ratho RK, Malhotra S. Effect of acyclovir solid lipid nanoparticles for the treatment of herpes simplex virus (HSV) infection in an animal model of HSV-1 infection. Pharm Nanotechnol. 2019;7(5):389-403. doi: 10.2174/2211738507666190829161737, PMID: 31465287.
Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508-19. doi: 10.3109/03639045.2012.665460, PMID: 22424312.
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry (Mosc). 2014;79(13):1635-52. doi: 10.1134/S0006297914130124, PMID: 25749169.
El-Assal MI. Acyclovir loaded solid lipid nanoparticle based cream: A novel drug delivery system. Int J Drug Deliv Technol. 2017;7(1):52-62. doi: 10.25258/ijddt.v7i1.8917.
Alsaad A, Hussien A, Ghareeb M. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst Rev Pharm. 2020;11(5):259-273. doi: 10.31838/srp.2020.5.39.
German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment. Pharmaceutics. 2023;15(3):831. doi: 10.3390/pharmaceutics15030831, PMID: 36986692; PMCID: PMC10056426.
Beloqui A, Solinís MÁ, Gascón AR, del Pozo-Rodríguez A, des Rieux A, Préat V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release. 2013;166(2):115-23. doi: 10.1016/j.jconrel.2012.12.021, PMID: 23266764.
Gill S, Löbenberg R, Ku T, Roa W, Prenner E. Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—A review. J Biomed Nanotechnol. 2007;3:107-119. doi: 10.1166/jbn.2007.015.
Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167-77. doi: 10.1016/s0378-5173(00)00378-1, PMID: 10802410.
Choi KO, Aditya NP, Ko S. Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem. 2014;147:239-44. Doi: 10.1016/j.foodchem.2013.09.095. PMID: 24206712.
El-Gizawy SA, El-Maghraby GM, Hedaya AA. Formulation of acyclovir-loaded solid lipid nanoparticles: Design, optimization, and in-vitro characterization. Pharm Dev Technol. 2019;24(10):1287-1298. doi: 10.1080/10837450.2019.1667385, PMID: 31507232.
Karpe M, Mali N, Kadam V. Formulation development and evaluation of acyclovir orally disintegrating tablets. J Appl Pharm Sci. 2012;2(3). doi: 10.7324/JAPS.2012.2317.
Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules. 2022;27(5):1543. doi: 10.3390/molecules27051543, PMID: 35268643.
Mahmood A, Ahmad M, Sarfraz RM, Minhas MU, Yaqoob A. Formulation and in vitro evaluation of acyclovir-loaded polymeric microparticles: A solubility enhancement study. Acta Pol Pharm. 2016;73(5):1311-1324. PMID: 29638071.
Nugrahani I, Mussadah MV. Development and validation analysis of acyclovir tablet content determination method using FTIR. Int J Appl Pharm. 2016;8(3):43-47. doi: 10.22159/ijap.2016v8i3.12946.
S., G., Chandrakala V, Srinivasan S. Development and evaluation of microsponge gel of an antifungal drug. Int J Curr Pharm Res. 2023 Jan;15(1):30-41. doi: 10.22159/ijcpr.2023v15i1.2069.
Parthiban R, Sathishkumar S, Surendhar S, Ramakrishnan P. Design and evaluation of acyclovir-loaded solid lipid nanoparticles for sustained release. Drug Invent Today. 2020;14:108-111.
Bhatnagar A, Bhatnagar E. Evaluation of a combination of gingival physiotherapy, flossing, and brushing technique through in-office observation. Int J Curr Pharm Res. 2023;15(3):34-36. doi: 10.22159/ijcpr.2023v15i3.3007.
Rajadhyax A, Shinde U, Desai H, Mane S. Hot melt extrusion in engineering of drug cocrystals: A review. Asian J Pharm Clin Res. 2021;14(8):10-19. doi: 10.22159/ajpcr.2021.v14i8.41857.
Gupta B, Sharma R. Formulation and in vitro characterization of the solid lipid nanoparticles of naftopidil for enhancing oral bioavailability. Asian J Pharm Clin Res. 2023;16(2):77-82. doi: 10.22159/ajpcr.2023.v16i2.46465.
Phalak SD, Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on nano drug delivery system: Solid lipid nanoparticles (SLN). Int J Curr Pharm Res. 2024;16(1):10-20. doi: 10.22159/ijcpr.2024v16i1.4020.
Published
How to Cite
Issue
Section
Copyright (c) 2024 DEEVAN PAUL AMARNATH
This work is licensed under a Creative Commons Attribution 4.0 International License.