BOX-BEHNKEN OPTIMIZATION OF MELOXICAM MICROCAPSULE SCAFFOLDS FOR PRECISION DRUG DELIVERY IN ARTHRITIS: ENHANCED STABILITY, EFFECTIVE STERILIZATION, AND IN VIVO THERAPEUTIC POTENTIAL
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52160Keywords:
Entrapment, Implants, Microspheres, Meloxicam, Expulsion, ScaffoldsAbstract
Objective: This study aims to develop and evaluate an innovative implantable drug delivery system using gelatin microspheres loaded with Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) namely meloxicam (MXM), integrated into a gelatin scaffold. This system is designed to enhance drug delivery efficiency and sustain drug release.
Methods: MXM-loaded microspheres with a 1:1 ratio of Poly Lactic Acid (PLA) and Poly Lacto Glycolic Acid (PLGA) were optimized for size, yield, efficiency, and release. Gelatin scaffolds were designed as rod-shaped implants, tested for stability and degradation in pH 7.4 and pH 4.0 buffers at 37°C for 100 days, and sterilized with γ-radiation. Implants were evaluated in rabbits, with blood samples analyzed via High-Performance Liquid Chromatography (HPLC) for pharmacokinetic parameters statistically analyzed (P<0.05).
Results: The microspheres with a 1:1 ratio of PLA and PLGA demonstrated favorable characteristics such as smaller particle sizes, high yield, and efficient drug entrapment and release. Optimization using Design Expert resulted in highly desirable scaffolds, evidenced by a desirability factor close to one across all assessed variables. The scaffolds exhibited robust physicochemical properties, including sustained drug release over an extended period, highlighting their potential for diverse biomedical applications. Implants showed greater stability in pH 7.4 buffer solutions in contrast to pH 4.0 over 100 days, with higher mass loss in acidic environments (14.4% vs. 9.66%). γ-Radiation sterilization effectively prevented microbial contamination. In vivo studies confirmed MXM detection in plasma, with Scaffold-MXM microspheres (iS-MMS-17) (optimized implantable scaffold) showing higher mean Cmax values and significant Area Under Curve (AUC) parameters, suggesting its potential for effective therapy.
Conclusion: The study found that the scaffolds exhibited strong physicochemical properties and sustained drug release, making them suitable for biomedical use. Implants were more stable at pH 7.4 than at pH 4.0, and γ-radiation effectively prevented microbial contamination. In vivo studies confirmed MXM detection, with iS-MMS-17 showing promising pharmacokinetic parameters for pain and arthritis therapy.
Downloads
References
. Long T, Tan W, Tian X, Tang Z, Hu K, Ge L, et al. Gelatin/alginate-based microspheres with sphere-in-capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. International Journal of Biological Macromolecules 2023;226:485-95. DOI: 10.1016/j.ijbiomac.2022.12.100
. Li J, Shi H, Gu S, Liu F, Han E-H. A smart anticorrosive coating based on pH-sensitive microspheres fabricated via a facile method for protection of AA2024-T3. Progress in Organic Coatings 2024;189:108259. DOI: 10.1016/j.porgcoat.2024.108259
. Qingyun F, Zhenzhao G, Dongyin B, Ke H, Ziyu S, Weihong J, et al. Multi-drug delivery and osteogenic performance of β-tricalcium phosphate/alginate composite microspheres. International Journal of Polymeric Materials and Polymeric Biomaterials 2024;73:1126-35. DOI: 10.1080/00914037.2024.1184235
. Liu Y, Shi J, Guo Y, Xue Z, Han K, Liu S, et al. Regulating hollow structure of CL-20 microspheres using microjet droplet technology to enhance safety and combustion performance. Fuel 2024;361:130748. DOI: 10.1016/j.fuel.2024.130748
. Karnam S, Donthi MR, Jindal AB, Paul AT. Recent innovations in topical delivery for management of rheumatoid arthritis: A focus on combination drug delivery. Drug Discovery Today 2024:104071. DOI: 10.1016/j.drudis.2024.104071
. Arshad R, Hassan D, Sani A, Mustafa G, Rahdar A, Fathi-karkan S, et al. Nano-Engineered Solutions for Ibuprofen Therapy: Unveiling Advanced Co-Delivery Strategies and Nanoparticle Systems. Journal of Drug Delivery Science and Technology 2024:105815. DOI: 10.1016/j.jddst.2024.105815
. Žid L, Zeleňák V, Almáši M, Zeleňáková A, Szücsová J, Bednarčík J, et al. Mesoporous silica as a drug delivery system for naproxen: Influence of surface functionalization. Molecules 2020;25:4722. DOI: 10.3390/molecules25204722
. Jang JH, Jeong SH, Lee YB. Dosage exploration of meloxicam according to CYP2C9 genetic polymorphisms based on a population pharmacokinetic‐pharmacodynamic model. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2023;43:145-57. DOI: 10.1002/phar.2707
. Yang Z, Liu L, Sheng L, Wang H, Li C, Lin X, et al. Design of an injectable sustained release in-situ forming depot of meloxicam for pain relief. Journal of Drug Delivery Science and Technology 2024;93:105460. DOI: 10.1016/j.jddst.2024.105460
. Gungor H, Corum O, Durna Corum D, Kumru AS, Yilmaz G, Coskun D, et al. Pharmacokinetics of meloxicam following intravenous administration at different doses in sheep. Journal of Veterinary Pharmacology and Therapeutics 2024;47:202-7. DOI: 10.1111/jvp.13190
. Sharma G, Sharma P, Alam MA. Scaffold-based microsphere in drug delivery system. International Journal of Nanomaterials, Nanotechnology and Nanomedicine 2023;10:016-22.
. Han N, Fang H, Niu R. Nanosphere and Microsphere-Based Drug Delivery Systems for Wound Healing Applications: A Review. Science of Advanced Materials 2023;15:441-56. DOI: 10.1166/sam.2023.4528
. Luo X, Zhang L, Luo Y, Cai Z, Zeng H, Wang T, et al. Charge‐driven self‐assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Advanced Functional Materials 2023;33:2214036. DOI: 10.1002/adfm.202214036
. Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, et al. Progress in the application of sustained-release drug microspheres in tissue engineering. Materials Today Bio 2022;16:100394. DOI: 10.1016/j.mtbio.2022.100394
. Song W, Tong T, Xu J, Wu N, Ren L, Li M, et al. Preparation and application of green chitosan/ploy (vinyl alcohol) porous microspheres for the removal of hexavalent chromium. Materials Science and Engineering: B 2022;284:115922. DOI: 10.1016/j.mseb.2022.115922
. Mundarinti SHB, Ahad HA. Impact of Pistacia lentiscus plant gum on particle size and swelling index in central composite designed amoxycillin trihydrate mucoadhesive microspheres. Indian Journal of Pharmaceutical Education and Research 2023;57:763-72. DOI: 10.5530/ijper.57.2.89
. Babu GN, Muthukaruppan M, Ahad HA. Impact of Azadirachta indica Fruit Mucilage on particle size and swelling index in Central Composite Designed Acyclovir mucoadhesive microspheres. Baghdad Science Journal 2023;20:0425-.DOI: 10.21123/bsj.2023.20.4.0425
. Harsha SS, Ahad HA, Haranath C, Dasari RR, Gowthami M, Varam NJ, et al. Exfoliation technique of composing and depictions of clopidogrel bisulphate afloat microspheres. Journal of Evolution of Medical and Dental Sciences 2020;9:1156-61. DOI: 10.14260/jemds/2020/253
. Singh S, Devi A, Sharma S, Sabharwal S, Sharma S, Dhiman S, et al. A Review on Microspheres and Its Role in Different Drug Delivery System as a Novel Approach. International Journal of Pharmaceutical Sciences 2024;2:1112-26.
. Li Z, Feng X, Luo S, Ding Y, Zhang Z, Shang Y, et al. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis. Asian Journal of Pharmaceutical Sciences 2023;18:100830. DOI: 10.1016/j.ajps.2022.100830
. Reddy PL, Shanmugasundaram S. Optimizing Process Parameters for Controlled Drug Delivery: A Quality by Design (QbD) Approach in Naltrexone Microspheres. AAPS PharmSciTech 2024;25:105. DOI: 10.1208/s12249-024-0252-8
. Shanmugasundaram S. QBD approach for design and characterization of pramlintide microspheres for controlled drug release. Journal of Pharmaceutical Innovation 2023;18:2325-47. DOI: 10.1007/s12247-023-09622-5
. Siraskar PR, Mishra DK. In-vivo estimation of optimized floating microspheres design by QBD approach. Research Journal of Pharmacy and Technology 2023;16:3697-700. DOI: 10.5958/0974-360X.2023.00658.4
. Asha B, Goudanavar P, Rao GK, Gandla K, Naveen NR, Majeed S, et al. QbD driven targeted pulmonary delivery of dexamethasone-loaded chitosan microspheres: Biodistribution and pharmacokinetic study. Saudi Pharmaceutical Journal 2023;31:101711. DOI: 10.1016/j.jsps.2023.101711
. Karmakar S, Poddar S, Khanam J. Understanding the effects of associated factors in the development of microsponge-based drug delivery: a statistical quality by design (QbD) approach towards optimization. AAPS PharmSciTech 2022;23:256. DOI: 10.1208/s12249-022-02352-2
. Alnaim AS, Shah H, Nair AB, Mewada V, Patel S, Jacob S, et al. Qbd-based approach to optimize niosomal gel of levosulpiride for transdermal drug delivery. Gels 2023;9:213. DOI: 10.3390/gels9040213
. Elkady OA, Tadros MI, El-Laithy HM. QbD approach for novel crosslinker-free ionotropic gelation of risedronate sodium–chitosan nebulizable microspheres: optimization and characterization. AAPS PharmSciTech 2020;21:1-18. DOI: 10.1208/s12249-020-01705-8
. Patil K, Gujarathi N, Sharma C, Ojha S, Goyal S, Agrawal Y. Quality-by-Design-Driven Nanostructured Lipid Scaffold of Apixaban: Optimization, Characterization, and Pharmacokinetic Evaluation. Pharmaceutics 2024;16:910. DOI: 10.3390/pharmaceutics16070910
. Munot NM, Shinde YD, Shah P, Patil A, Patil SB, Bhinge SD. Formulation and evaluation of chitosan-PLGA biocomposite scaffolds incorporated with quercetin liposomes made by QbD approach for improved healing of oral lesions. AAPS PharmSciTech 2023;24:147. DOI: 10.1208/s12249-023-02660-8
. Farazin A, Mahjoubi S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. Journal of the Mechanical Behavior of Biomedical Materials 2024:106661. DOI: 10.1016/j.jmbbm.2023.106661
. Zielińska A, Karczewski J, Eder P, Kolanowski T, Szalata M, Wielgus K, et al. Scaffolds for drug delivery and tissue engineering: The role of genetics. Journal of Ophthalmology Clinics and Research 2023;359:207-23. DOI: 10.3390/jocr.2023.359207
. Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, et al. Solid implantable devices for sustained drug delivery. Advanced Drug Delivery Reviews 2023;199:114950. DOI: 10.1016/j.addr.2023.114950
. Muhindo D, Ashour EA, Almutairi M, Repka MA. Development of Subdermal Implants Using Direct Powder Extrusion 3D Printing and Hot-Melt Extrusion Technologies. AAPS PharmSciTech 2023;24:215. DOI: 10.1208/s12249-023-02735-6
. Al-Litani K, Ali T, Martinez PR, Buanz A. 3D printed implantable drug delivery devices for women’s health: Formulation challenges and regulatory perspective. Advanced Drug Delivery Reviews 2023;198:114859. DOI: 10.1016/j.addr.2023.114859
. Gunawardana M, Remedios-Chan M, Sanchez D, Fanter R, Webster S, Webster P, et al. Preclinical considerations for long-acting delivery of tenofovir alafenamide from subdermal implants for HIV pre-exposure prophylaxis. Pharmaceutical Research 2023;40:1657-72. DOI: 10.1007/s11095-023-03540-5
. Behrends W, Wulf K, Raggl S, Fröhlich M, Eickner T, Dohr D, et al. Dual drug delivery in Cochlear implants: in vivo study of dexamethasone combined with diclofenac or Immunophilin inhibitor MM284 in Guinea pigs. Pharmaceutics 2023;15:726. DOI: 10.3390/pharmaceutics15030726
. Jarosz M, Pawlik A, Szuwarzyński M, Jaskuła M, Sulka GD. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids and Surfaces B: Biointerfaces 2016;143:447-54. DOI: 10.1016/j.colsurfb.2016.03.022
. Wójcik-Pastuszka D, Krzak J, Macikowski B, Berkowski R, Osiński B, Musiał W. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials 2019;12:1202. DOI: 10.3390/ma12081202
. Suh MS, Kastellorizios M, Tipnis N, Zou Y, Wang Y, Choi S, et al. Effect of implant formation on drug release kinetics of in situ forming implants. International Journal of Pharmaceutics 2021;592:120105. DOI: 10.1016/j.ijpharm.2020.120105
. Zamoume O, Thibault S, Regnié G, Mecherri MO, Fiallo M, Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Materials Science and Engineering: C 2011;31:1352-6. DOI: 10.1016/j.msec.2011.06.007
. Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Materials Today Bio 2023;18:100540. DOI: 10.1016/j.mtbio.2023.100540
. Alshimaysawee S, Fadhel Obaid R, Al-Gazally ME, Alexis Ramírez-Coronel A, Bathaei MS. Recent advancements in metallic drug-eluting implants. Pharmaceutics 2023;15:223. DOI: 10.3390/pharmaceutics15010223
. Zlomke C, Barth M, Mäder K. Polymer degradation induced drug precipitation in PLGA implants–Why less is sometimes more. European Journal of Pharmaceutics and Biopharmaceutics 2019;139:142-52. DOI: 10.1016/j.ejpb.2019.04.017
. Singh M, Gill AS, Deol PK, Agrawal A, Sidhu SS. Drug eluting titanium implants for localised drug delivery. Journal of Materials Research 2022;37:2491-511. DOI: 10.1557/s43578-022-00668-y
. Lehner E, Liebau A, Menzel M, Schmelzer CE, Knolle W, Scheffler J, et al. Characterization of PLGA versus PEG-PLGA Intracochlear Drug Delivery Implants: Degradation Kinetics, Morphological Changes, and pH Alterations. Journal of Drug Delivery Science and Technology 2024:105972. DOI: 10.1016/j.jddst.2023.105972
. Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opinion on Drug Delivery 2022;19:1177-81. doi: 10.1080/17425247.2022.2120190
. Panezai J, van Dyke T. Polyunsaturated fatty acids and their immunomodulatory actions in periodontal disease. Nutrients 2023;15:821. doi: 10.3390/nu15040821
. Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles–a systematic analytical review. Acta biomaterialia 2014;10:2379-403. doi: 10.1016/j.actbio.2014.01.018
. Wang X, Burgess DJ. Drug release from in situ forming implants and advances in release testing. Advanced Drug Delivery Reviews 2021;178:113912. doi: 10.1016/j.addr.2021.113912
. Wang X, Roy M, Wang R, Kwok O, Wang Y, Wang Y, et al. Towards in vitro–In vivo correlation models for in situ forming drug implants. Journal of Controlled Release 2024;372:648-60. doi: 10.1016/j.jconrel.2024.01.002
. Sun Z, Li M, Qian S, Gu Y, Huang J, Li J. Development of a detection method for 10 non-steroidal anti-inflammatory drugs residues in four swine tissues by ultra-performance liquid chromatography with tandem mass spectrometry. Journal of Chromatography B 2023;1223:123722.
. Kaya DI, Şatır S, Öztaş B, Yıldırım H. Avoiding Sinus Floor Elevation by Placing a Palatally Angled Implant: A Morphological Study Using Cross-Sectional Analysis Determined by CBCT. Diagnostics 2024;14:1242. doi: 10.1016/j.jchromb.2023.123722
. Önder YB, Alpaslan NZ. Peri-implant phenotype, calprotectin and MMP-8 levels in cases diagnosed with peri-implant disease. Clinical Oral Investigations 2024;28:1-12.
. Yuksel M, Kaya SN. Speech Perception as a Function of the Number of Channels and Channel Interaction in Cochlear Implant Simulation. Medeniyet Medical Journal 2023;38:276. doi: 10.5222/MMJ.2023.03796
. Gohel M, Delvadia R, Parikh D, Zinzuwadia M, Soni C, Sarvaiya K, et al. Simplified mathematical approach for back calculation in Wagner-Nelson method: applications in in vitro and in vivo correlation (IVIVC) and formulation development work. Pharm Rev 2005;3:1-8.
. Xiong J, Xu Y, He S, Zhang Y, Wang Z, Wang S, et al. Pharmacokinetics and bioavailability of tildipirosin in rabbits following single‐dose intravenous and intramuscular administration. Journal of Veterinary Pharmacology and Therapeutics 2020;43:448-53. doi: 10.1111/jvp.12856
. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy 2016;7:27. doi: 10.4103/0976-0105.177703
. Jacob S, Nair AB, Morsy MA. Dose conversion between animals and humans: A practical solution. Indian J Pharm Educ Res 2022;56:600-7. doi: 10.5530/ijper.56.3s.96
. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug development research 2018;79:373-82. doi: 10.1002/ddr.21452
. Elmeliegy M, Udata C, Liao K, Yin D. Considerations on the calculation of the human equivalent dose from toxicology studies for biologic anticancer agents. Springer; 2021. p. 563-7. doi: 10.1007/978-3-030-70038-5_56
. Hosseini A, Shorofi SA, Davoodi A. Starting dose calculation for medicinal plants in animal studies; recommendation of a simple and reliable method. Research Journal of Pharmacognosy 2018;5:1-7.
. Zou P, Yu Y, Zheng N, Yang Y, Paholak HJ, Yu LX, et al. Applications of human pharmacokinetic prediction in first-in-human dose estimation. The AAPS journal 2012;14:262-81. doi: 10.1208/s12248-012-9332-0
. Hemanth A, Abdul HA, and Devanna N. Evaluating the best polyethylene glycol as solid dispersion carrier by taking etoricoxib as a model drug. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12 (3), pp. 250-5, doi:10.22159/ajpcr.2019.v12i3.30251.
. Limongi T, Susa F, Allione M, Di Fabrizio E. Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 2020;12:851. doi: 10.3390/pharmaceutics12090851
. Akila, R. M., and M. Janani. Development, characterization, and evaluation of the antimicrobial properties of biodegradable porous scaffolds loaded with natural vanillin”. International Journal of Pharmacy and Pharmaceutical Sciences, 2023. 15 (11) pp. 31-37, doi:10.22159/ijpps.2023v15i11.48987.
. Soni G, Yadav KS, Gupta M. QbD based approach for formulation development of spray dried microparticles of erlotinib hydrochloride for sustained release. Journal of Drug Delivery Science and Technology 2020;57:101684. doi: 10.1016/j.jddst.2020.101684
. Javed MN, Kohli K, Amin S. Risk assessment integrated QbD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 2018;19:1377-91. doi: 10.1208/s12249-018-0966-7
. Ali R, Mehta P, Monou PK, Arshad MS, Panteris E, Rasekh M, et al. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. European Journal of Pharmaceutics and Biopharmaceutics 2020;156:20-39. doi: 10.1016/j.ejpb.2020.09.010
. Aw MS, Khalid KA, Gulati K, Atkins GJ, Pivonka P, Findlay DM, et al. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. International journal of nanomedicine 2012:4883-92. doi: 10.2147/IJN.S36065
. Dhas, S. K., and G. Deshmukh. Formulation and evaluation of meloxicam microspheres for colon-targeted drug delivery. Asian Journal of Pharmaceutical and Clinical Research, 2021, 14 (8)pp. 45-51, doi:10.22159/ajpcr.2021.v14i8.38482.
. Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue engineering 2006;12:3383-94. DOI: 10.1089/ten.2006.12.3383
. Gulati K, Aw MS, Findlay D, Losic D. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Therapeutic delivery 2012;3:857-73. DOI: 10.4155/tde.12.52
. Dominas C, Deans K, Packard R, Jonas O. Preparation and sterilization of an implantable drug-delivery microdevice for clinical use. MethodsX 2021;8:101382. DOI: 10.1016/j.mex.2021.101382
. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers 2018;10:1379. DOI: 10.3390/polym10121379
. Patel RB, Solorio L, Wu H, Krupka T, Exner AA. Effect of injection site on in situ implant formation and drug release in vivo. Journal of controlled release 2010;147:350-8. DOI: 10.1016/j.jconrel.2010.07.021
. Rahman S, Gulati K, Kogawa M, Atkins GJ, Pivonka P, Findlay DM, et al. Drug diffusion, integration, and stability of nanoengineered drug‐releasing implants in bone ex‐vivo. Journal of Biomedical Materials Research Part A 2016;104:714-25. DOI: 10.1002/jbm.a.35537
. Abpeikar Z, Milan PB, Moradi L, Anjomshoa M, Asadpour S. Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes. Mechanics of Advanced Materials and Structures 2022;29:4911-22. DOI: 10.1080/15376494.2022.2063488
. Li P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D, et al. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. Materials Science and Engineering: C 2021;130:112430. DOI: 10.1016/j.msec.2021.112430
. Yadav A, Yadav M, Yadav AK, Mishra S, Jena S, and Rai JK. 3D printing technique: a review on the applications in pharmaceutical manufacturing. International Journal of Pharmacy and Pharmaceutical Sciences, 2024, 16 (4), pp. 11-17, doi:10.22159/ijpps.2024v16i4.50139.
Published
How to Cite
Issue
Section
Copyright (c) 2024 SAMPATH KUMAR, MOTHILAL MOHAN
This work is licensed under a Creative Commons Attribution 4.0 International License.