FORMULATION DEVELOPMENT AND PHARMACOKINETIC STUDIES OF NIRMATRELVIR LOADED SOLID LIPID NANOPARTICLES USING BOX- BEHNKEN DESIGN

Authors

  • SRI REKHA M. Department of Pharmaceutics, SRM College of Pharmacy, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-6145-1388
  • SANGEETHA S. Department of Pharmaceutics, SRM College of Pharmacy, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52380

Keywords:

Solid lipid nanoparticles, Anti-viral agent, PaxlovidTM, Nirmatrelvir, Compritol888 ATO, Box-behnken design, Risk assessment analysis

Abstract

Objective: This study aims to develop a new lipid formulation known as Solid Lipid Nanoparticles (SLNs) to increase the oral bioavailability of Nirmatrelvir (NMT)by facilitating intestinal lymphatic transport. Nirmatrelvir is a crucial antiviral agent utilized for the treatment and prophylaxis of Coronavirus disease 2019 (COVID-19).

Methods: Nirmatrelvir loaded Solid Lipid Nanoparticles (NMT-SLNs) were formulated using the Microemulsion technique with Compritol 888 ATO, and the optimization of lipid and surfactant concentrations, as well as homogenization time, was achieved through the Box-Behnken Design. The resulting NMT-SLNs underwent evaluation for percentage Entrapment Efficiency, Particle Diameter, Zeta potential, Polydispersity Index (PDI), and In-vitro drug release studies.

Results: Optimized formulation (NF8), yielded a particle of 183.26±2.12 nm size with a narrow distribution of 0.071±0.004PDI, negative zeta potential of -24.63±1.92 mV, percent entrapment of 86.94±2.08%, and cumulative drug release of 84.42±3.16% over 24 hours. Furthermore, solid-state characterization by PXRD, surface morphology assessment by SEM, and an in-vivo distribution study employing albino Wistar rats were conducted. The findings demonstrated a 10.14-fold increase in relative bioavailability and an 85% enhancement in brain uptake compared to pure NMT solution following oral administration.

Conclusion: This research highlights the potential advantages of Solid Lipid Nanoparticles (SLNs) in enhancing the oral delivery of Nirmatrelvir. Finally, the study concluded that SLNs serve as a promising vehicle for improving bioavailability and facilitating effective brain delivery.

Downloads

Download data is not yet available.

References

Owen DR, Allerton CM, Anderson AS, Aschenbrenner L, Avery M, Berritt S. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science, 2021; 374 (6575):1586–1593.

Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2023 Aug 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/.

SimSek YS, Celikyurt K. Antiviral treatment of COVID-19: An update. Turkish Journal of Medical Sciences.2021;51(1):3372–3390. doi:10.3906/sag-2106-250. PMID: 34391321.

Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem., 2016; 59(14):6595-6628. doi: 10.1021/acs.jmedchem.5b01461. Epub 2016 Feb 29. PMID: 26878082.

Ledford H. Long-COVID treatments: why the world is still waiting. Nature. 2022;608(7922):258-260. doi: 10.1038/d41586-022-02140-w.

Lamb YN. Nirmatrelvir Plus Ritonavir: First Approval. Drugs. 2022 Apr;82(5):585-591. doi: 10.1007/s40265-022-01692-5. Erratum in: Drugs. 2022 Jun;82(9):1025. doi: 10.1007/s40265-022-01737-9. PMID: 35305258.

Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, Wang X, Jochmans D, Neyts J, Młynarski W, Hilgenfeld R, Drag M. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat Chem Biol. 2021 Feb;17(2):222-228. doi: 10.1038/s41589-020-00689-z. Epub 2020 Oct 22. PMID: 33093684.

Ahmad B, Batool M, Ain QU, Kim MS, Choi S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Int J Mol Sci. 2021 Aug 24;22(17):9124. doi: 10.3390/ijms22179124. PMID: 34502033.

Eng H, Dantonio AL, Kadar EP, Obach RS, Di L, Lin J, Patel NC, Boras B, Walker GS, Novak JJ, Kimoto E, Singh RSP, Kalgutkar AS. Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Drug MetabDispos. 2022 May;50(5):576-590. doi: 10.1124/dmd.121.000801. Epub 2022 Feb 13. PMID: 35153195.

Lam C, Patel P. Nirmatrelvir-Ritonavir. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK585126/

Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Biomed Res Int. 2022 Jul 7;2022:7341493. doi: 10.1155/2022/7341493. PMID: 35845944.

Katzenmaier S, Markert C, Riedel KD, Burhenne J, Haefeli WE, Mikus G. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther. 2011 Nov;90(5):666-73. doi: 10.1038/clpt.2011.164. Epub 2011 Sep 21. PMID: 21937987.

Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003 Jun 13;300(5626):1763-7. doi: 10.1126/science.1085658. Epub 2003 May 13. PMID: 12746549.

Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, Pozniak A, Boffito M, Waters L, Burger D, Back DJ, Khoo S. Recommendations for the Management of Drug-Drug Interactions Between the COVID-19 Antiviral Nirmatrelvir/Ritonavir (Paxlovid) and Comedications. Clin Pharmacol Ther. 2022 Dec;112(6):1191-1200. doi: 10.1002/cpt.2646. Epub 2022 Jun 7. PMID: 35567754.

Chan GCK, Lui GCY, Wong CNS, Yip SST, Li TCM, Cheung CSK, Sze RKH, Szeto CC, Chow KM. Safety profile and clinical and virological outcomes of nirmatrelvir-ritonavir treatment in patients with advanced chronic kidney disease and coronavirus disease 2019. Clin Infect Dis. 2023 Nov 17;77(10):1406-1412. doi: 10.1093/cid/ciad371. PMID: 37531093.

Charness ME, Gupta K, Stack G, Strymish J, Adams E, Lindy DC, Mohri H, Ho DD. Rebound of SARS-CoV-2 Infection after Nirmatrelvir-Ritonavir Treatment. N Engl J Med. 2022 Sep 15;387(11):1045-1047. doi: 10.1056/NEJMc2206449. Epub 2022 Sep 7. PMID: 36069968.

Boucau J, Uddin R, Marino C, Regan J, Flynn JP, Choudhary MC, Chen G, Stuckwisch AM, Mathews J, Liew MY, Singh A, Reynolds Z, Iyer SL, Chamberlin GC, Vyas TD, Vyas JM, Turbett SE, Li JZ, Lemieux JE, Barczak AK, Siedner MJ. Characterization of Virologic Rebound Following Nirmatrelvir-Ritonavir Treatment for Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2023 Feb 8;76(3):e526-e529. doi: 10.1093/cid/ciac512. PMID: 35737946.

Anderson AS, Caubel P, Rusnak JM; EPIC-HR Trial Investigators. Nirmatrelvir-Ritonavir and Viral Load Rebound in Covid-19. N Engl J Med. 2022 Sep 15;387(11):1047-1049. doi: 10.1056/NEJMc2205944. Epub 2022 Sep 7. PMID: 36069818.

Cho HY, Lee YB. Nano-sized drug delivery systems for lymphatic delivery. J NanosciNanotechnol. 2014 Jan;14(1):868-80. doi: 10.1166/jnn.2014.9122. PMID: 24730304.

Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001 Aug 23;50(1-2):107-42. doi: 10.1016/s0169-409x(01)00152-1. PMID: 11489336.

Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K, Sonje A. Solid lipid based nanocarriers: an overview. Acta Pharm. 2012 Dec;62(4):433-72. doi: 10.2478/v10007-012-0040-z. PMID: 23333884.

Priyanka P, Srirekha M, Seetha DA. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. International Journal of Pharmacy and Pharmaceutical Sciences. Jan. 2022;14(1): 1-8. doi:10.22159/ijpps.2022v14i1.42595.

Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):901-8. doi: 10.1016/j.addr.2011.05.017. Epub 2011 Jun 25. PMID: 21712055.

Mura P, Maestrelli F, D'Ambrosio M, Luceri C, Cirri M. Evaluation and Comparison of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Vectors to Develop Hydrochlorothiazide Effective and Safe Pediatric Oral Liquid Formulations. Pharmaceutics. 2021 Mar 24;13(4):437. doi: 10.3390/pharmaceutics13040437. PMID: 33804945.

Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability. Biomed Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014. Epub 2017 Jan 23. PMID: 28243600.

Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765. PMID: 21897661.

Priyadarsini S, Lahoti S.R. Quality by Design: Optimization of Letrozole Solid Lipid Nanoparticle for Breast Cancer. Indian J of Pharmaceutical Education and Research. 2022;56(4):1013-24.DOI:10.5530/ijper.56.4.182.

Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm. 2018 Dec;44(12):1975-1989. doi: 10.1080/03639045.2018.1506472. Epub 2018 Aug 31. PMID: 30058392.

Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interface Sci. 2014 Aug 15;428:286-94. doi: 10.1016/j.jcis.2014.04.057. Epub 2014 May 4. PMID: 24910064.

Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics. 2018 Feb 23;10(1):26. doi: 10.3390/pharmaceutics10010026. PMID: 29473897.

Kashanian S, Azandaryani AH, Derakhshandeh K. New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomedicine. 2011;6:2393-401. doi: 10.2147/IJN.S20849. Epub 2011 Nov 1. PMID: 22114489.

Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull (Tokyo). 2010 May;58(5):650-5. doi: 10.1248/cpb.58.650. PMID: 20460791.

Priyanka K, Sathali AA. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J Young Pharm. 2012 Jul;4(3):129-37. doi: 10.4103/0975-1483.100016. PMID: 23112531.

Aslam R, Tiwari V, Upadhyay P, Tiwari A.Revolutionizing therapeutic delivery: diosgenin-loaded solid lipid nanoparticles unleash advanced carriers. International Journal of Applied Pharmaceutics. Jan 2024; 16(1):124-33. doi:10.22159/ijap.2024v16i1.49306.

Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res. 2011 Oct;1(5):395-406. doi: 10.1007/s13346-011-0036-0. PMID: 25788423.

Muhammad S, Mir A. K, Waheed S. K, Maqsood R, Waqa, A, Shahzeb K. Fabrication, Characterization, and In Vivo Evaluation of Famotidine Loaded Solid Lipid Nanoparticles for Boosting Oral Bioavailability. Journal of Nanomaterials. 2017; 14:1-10. Article ID 7357150. https://doi.org/10.1155/2017/7357150.

Martens-Lobenhoffer J, Boger CR, Kielstein J, Bode-Boger SM. Simultaneous quantification of nirmatrelvir and ritonavir by LC-MS/MS in patients treated for COVID-19. J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Dec 1;1212:123510. doi: 10.1016/j.jchromb.2022.123510. Epub 2022 Oct 17. PMID: 36274268.

Hassan H, Bello RO, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Acyclovir-Loaded Solid Lipid Nanoparticles: Optimization, Characterization and Evaluation of Its Pharmacokinetic Profile. Nanomaterials (Basel). 2020 Sep 9;10(9):1785. doi: 10.3390/nano10091785. PMID: 32916823.

Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech. 2011 Sep;12(3):1011-8. doi: 10.1208/s12249-011-9665-3. Epub 2011 Aug 3. PMID: 21811889.

Phalak SD,Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on nano drug delivery system: solid lipid nanoparticles (SLN). International Journal of Current Pharmaceutical Research. Jan. 2024;16(1):10-20. doi:10.22159/ijcpr.2024v16i1.4020.

Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014 Dec;11(12):1865-83. doi: 10.1517/17425247.2014.935335. Epub 2014 Aug 24. PMID: 25152197.

GuptaB, Sharma R. formulation and in vitro characterization of the solid lipid nanoparticles of naftopidil for enhancing oral bioavailability. Asian Journal of Pharmaceutical and Clinical Research.Feb. 2023;16(2):77-82. doi:10.22159/ajpcr. 2023.v16i2.46465.

Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765.

Chen WN, Shaikh MF, Bhuvanendran S, Date A, Ansari MT, Radhakrishnan AK, Othman I. Poloxamer 188 (P188), A Potential Polymeric Protective Agent for Central Nervous System Disorders: A Systematic Review. Curr Neuropharmacol. 2022;20(4):799-808. doi: 10.2174/1570159X19666210528155801. PMID: 34077349.

Xia Y, Fu S, Ma, Q. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. Nano-Micro Lett. 2023; 15:145:1-35.doi: 10.1007/s40820-023-01125-2.

Qushawy M, Prabahar K, Abd-Alhaseeb M, Swidan S, Nasr A. Preparation and Evaluation of Carbamazepine Solid Lipid Nanoparticle for Alleviating Seizure Activity in Pentylenetetrazole-Kindled Mice. Molecules. 2019 Nov 2;24(21):3971. doi: 10.3390/molecules24213971.

Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability. Biomed Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014.

Galli M, Migliano F, Fasano V, Silvani A, Passarella D, Citarella A. Nirmatrelvir: From Discovery to Modern and Alternative Synthetic Approaches. Processes. 2024;12(6): 1242. doi:10.3390/pr12061242.

Remya PN, Damodharan N. Formulation, development, and characterization of cilnidipine loaded solid lipid nanoparticles. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11(1): 120-5. doi:10.22159/ajpcr.2018.v11i9.24666.

Abdelbary G, Fahmy RH. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech. 2009;10(1):211-9. doi: 10.1208/s12249-009-9197-2.

Madgulkar AR, Padalkar RR, Amale SK, Preformulation Studies of Intranasal Solid Lipid Nanoparticles of Mometasone Furoate, Journal of Drug Delivery and Therapeutics. 2019; 9(4):526-528 http://dx.doi.org/10.22270/jddt.v9i4.3100.

Shah J, Patel S, Bhairy S, Hirlekar R. Formulation optimization, characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. International Journal of Current Pharmaceutical Research. Jan. 2022;14(1):31-43, doi:10.22159/ijcpr.2022v14i1.44110.

Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra Net al.Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery.Nanomedicine. 2009;5(2):184-91. doi: 10.1016/j.nano.2008.08.003, PMID 19095502.

Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016 Mar;11(6):673-92. doi: 10.2217/nnm.16.5. Epub 2016 Mar 22.

Chattopadhyay N, Zastre J, Wong HL, Wu XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008 Oct;25(10):2262-71. doi: 10.1007/s11095-008-9615-2.

Published

16-11-2024

How to Cite

M., S. R., & S., S. (2024). FORMULATION DEVELOPMENT AND PHARMACOKINETIC STUDIES OF NIRMATRELVIR LOADED SOLID LIPID NANOPARTICLES USING BOX- BEHNKEN DESIGN. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52380

Issue

Section

Original Article(s)

Most read articles by the same author(s)