NETWORK PHARMACOLOGY BASED COMPUTATIONAL STUDY TO INVESTIGATE THE POTENTIAL MECHANISM OF SYZYGIUM CARYOPHYLLATUM AGAINST COLON CANCER

Authors

  • RAMADEVI PEMMEREDDY Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0003-3667-1781
  • AJAY MILI Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-0718-6114
  • BHARATH HAROHALLI BYREGOWDA Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-1362-2090
  • JYOTHI GIRIDHAR Department of Pharmaceutical chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • SREEDHARA RANGANATH PAI K Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-2017-9533
  • ANNA MATHEW Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • VASUDEV PAI Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-5147-6389
  • CHANDRASHEKAR K. S Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0003-3667-1781

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52490

Keywords:

Syzygium caryophyllatum, GC-MS analysis, SRB assay, Network pharmacology, Molecular docking

Abstract

Objective: Syzygium caryophyllatum, a traditional medicinal plant from the Myrtaceae family, is rich in potential phytoconstituents. Based on its ethnobotanical uses and documented pharmacological activities, present work was conducted to evaluate the probable mechanism of action of S. caryophyllatum to manage colon cancer by integrating network pharmacology and computational studies.

Methods: The plant extract was prepared by Soxhlet extraction method and in vitro screening was performed using Sulforhodamine (SRB) Assay on HT 29 cancer cell lines. We have used super-PRED database, Cytoscape network analyser tool, string database and CytoHubba for performing network analysis for the extract compounds reported in GC-MS analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DAVID databases were used for gene set enrichment analysis. We have used Schrödinger suite Version 11.4's to perform computational studies.

Results: The extract has demonstrated significant in vitro cytotoxic activity (IC50 value is 49.01 µg/ml) and the GC-MS analysis identified seventy-six distinct compounds. The Gene Ontology (GO) and KEGG demonstrated that the shared targets were strongly associated with key processes involved in colon cancer. The current study has identified Estrogen Receptor Alpha (ESR1), Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1), Mitogen-activated protein kinase 3 (MAP3K), Epidermal Growth Factor Receptor (EGFR) and Signal transducer and activator of transcription 3 (STAT3) proteins as essential targets and 5,7-Dihydroxy-2-undecyl-4H-chromen-4-one, 7a,12-Dihydroindolo[2,3-a] quinolizine, 5-hydroxy-7-methoxy-2-methyl-8-(3-methylbutyl) chromen-4-one as key compounds. Docking studies of the compounds with core proteins completely supplemented their binding affinity and suggested strong interactions at the binding site.

Conclusion: These outcomes highlight the multi-target, multi-compound, and the multi-pathway approaches of S. caryophyllatum against colon cancer

Downloads

Download data is not yet available.

References

World Health Organization. World health statistics 2023: monitoring health for the sdgs, sustainable development goals. Available online: https://www.who.int/publications/i/item/9789240074323 (accessed on 10.12.2023).

Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023 Apr 4;15(4):495. doi: 10.4240/wjgs.v15.i4.495.

Negarandeh R, Salehifar E, Saghafi F, Jalali H, Janbabaei G, Abdhaghighi MJ, Nosrati A. Evaluation of adverse effects of chemotherapy regimens of 5-fluoropyrimidines derivatives and their association with DPYD polymorphisms in colorectal cancer patients. BMC cancer. 2020 Dec;20:1-7. doi: 10.1186/s12885-020-06904-3.

Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front. Oncol. 2022 Sep 8;12:956793. doi: 10.3389/fonc.2022.956793.

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021 Mar;20(3):200-16.

Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012 Apr 16;2(2):303-36. doi: 10.3390/metabo2020303

Shaikh AM, Shrivastava B, Apte KG, Navale SD. Medicinal plants as potential source of anticancer agents: a review. J Pharmacogn Phytochem. 2016;5(2):291-5.

Ediriweera ER, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009 Oct 1;30(4):373-91.

Shilpa KJ, Krishnakumar G. Nutritional, fermentation and pharmacological studies of Syzygium caryophyllatum (L.) Alston and Syzygium zeylanicum (L.) DC fruits. Cogent food agric. 2015 Dec 31;1(1):1018694. doi: 10.1080/23311932.2015.1018694

Stalin N, Swamy PS. Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston. Clin. Phytosci. 2018 Dec 1;4(1). Doi:10.1186/s40816-017-0059-2

Rabeque CS, Padmavathy S. Hypoglycaemic effect of Syzygium caryophyllatum (L.) alston on alloxan induced diabetic albino mice. Asian J Pharm Clin Res. 2013;6(4):203-5.

Raj R, Chandrashekar KS, Pai V. In vitro Anti-Cancer activity of Syzygium caryophyllatum L. on HeLa Cell Lines using MTT assay Lat. Am. J. Pharm. 2018 Jan 1;37(5):1046-8.

Patwardhan, B.; Chandran, U. Network ethnopharmacology approaches for formulation discovery. Indian J. Tradit. Knowl. 2015, 14, 574–580.

Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 Jun 12;309:116306. doi: 10.1016/j.jep.2023.116306.

Orellana EA, Kasinski AL. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-protoc. 2016 Nov 5;6(21):e1984. doi: 10.21769/BioProtoc.1984.

Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007 Aug 1;42(4):377-87. doi: 10.1016/j.ymeth.2007.01.003

Omoboyede V, Onile OS, Oyeyemi BF, Aruleba RT, Fadahunsi AI, Oke GA, Onile TA, Ibrahim O, Adekiya TA. Unravelling the anti-inflammatory mechanism of Allium cepa: an integration of network pharmacology and molecular docking approaches. Mol. Divers. 2024 Apr;28(2):727-47. doi: 10.1007/s11030-023-10614-w.

Yu JW, Yuan HW, Bao LD, Si LG. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol. Divers. 2021 Feb;25:233-48. doi: 10.1007/s11030-020-10055-9.

Mutiah R, Rachmawati E, Zahiro SR, Milliana A. Elucidating the active compound profile and mechanisms of Dendrophthoe pentandra on colorectal cancer: LCMS/MS identification and network pharmacology analysis. J. Appl. Pharm. Sci. 2024 Feb 5;14(02):222-31. doi: 10.7324/JAPS.2024.152900.

Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology, molecular docking, and molecular dynamics simulation. Int j app pharm. 2024;16(2):188-94.

Tan S, Yulandi A, Tjandrawinata RR. Network pharmacology study of Phyllanthus niruri: Potential target proteins and their hepatoprotective activities. J. Appl. Pharm. Sci. 2023 Dec 5;13(12):232-42. doi:10.7324/JAPS.2023.146937.

Gadewar MA, Lal BH. Molecular docking and screening of drugs for 6lu7 protease inhibitor as a potential target for Covid-19. Int j app pharm. 2022; 14(1):100-5.

Nurhasanah NE, Fadilah FA, Bahtiar AN. Prediction of active compounds of muntingia calabura as potential treat-ment for chronic obstructive pulmonary diseases by network pharmacology integrated with molecular docking. Int J Appl Pharm. 2023 Jan 1;15(1):274-9. doi: 10.22159/ijap.2023v15i1.46281.

Mili A, Birangal S, Nandakumar K, Lobo R. A computational study to identify Sesamol derivatives as NRF2 activator for protection against drug-induced liver injury (DILI). Mol. Divers. 2024 Jun;28(3):1709-31. doi: 10.1007/s11030-023-10686-8.

Mehta SI, Pathak SR. In silico drug design and molecular docking studies of novel coumarin derivatives as anticancer agents. Asian J Pharm Clin Res. 2017;10(4):335-40. doi: 10.22159/ajpcr.2017.v10i4.16826.

Sahayarayan JJ, Rajan KS, Vidhyavathi R, Nachiappan M, Prabhu D, Alfarraj S, Arokiyaraj S, Daniel AN. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J. Biol. Sci. 2021 Jan 1;28(1):400-7. doi: 10.1016/j.sjbs.2020.10.023.

Suresh AJ, Devi R, Noorulla KM, Surya PR. Insights into thioridazine for its anti-tubercular activity from molecular docking studies. Int J Pharm Pharm Sci. 2015;7(3):344-6.

Bhat NB, Das S, Sridevi BV, Nayaka S, Birangal SR, Shenoy GG, Joseph A. Molecular docking and dynamics supported investigation of antiviral activity of Lichen metabolites of Roccella montagnei: An in silico and in vitro study. J. Biomol. Struct. Dyn. 2023 Dec 29;41(21):11484-97. doi: 10.1080/07391102.2023.2180666.

Vanajothi R, Hemamalini V, Jeyakanthan J, Premkumar K. Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. J. Biomol. Struct. Dyn. 2020 Jun 12;38(9):2800-8. doi: 10.1080/07391102.2019.1640132.

Kumar S, Sharma PP, Shankar U, Kumar D, Joshi SK, Pena L, Durvasula R, Kumar A, Kempaiah P, Poonam, Rathi B. Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure–activity relationship studies. J. Chem. Inf. Model. 2020 Jun 2;60(12):5754-70.

Mahgoub MA, Alnaem A, Fadlelmola M, Abo-Idris M, Makki AA, Abdelgadir AA, Alzain AA. Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS‐CoV‐2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics. J. Biomol. Struct. Dyn. 2023 Sep 22;41(14):6775-88. doi: 10.1080/07391102.2022.2112080

Gao Y, Nan Z. Mechanistic insights into the use of rhubarb in diabetic kidney disease treatment using network pharmacology. Medicine. 2022 Jan 7;101(1):e28465.

Pang X, Fu W, Wang J, Kang D, Xu L, Zhao Y, Liu AL, Du GH. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxid Med Cell Longev. 2018;2018(1):6040149. Doi: 10.1155/2018/6040149.

Brasca MG, Mantegani S, Amboldi N, Bindi S, Caronni D, Casale E, Ceccarelli W, Colombo N, De Ponti A, Donati D, Ermoli A. Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorg. Med. Chem. 2013 Nov 15;21(22):7047-63. Doi: 10.1016/j.bmc.2013.09.018.

Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T. Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochem. Biophys. Res. Commun. 2008 Dec 26;377(4):1123-7. doi: 10.1016/j.bbrc.2008.10.127.

Heppner DE, Günther M, Wittlinger F, Laufer SA, Eck MJ. Structural basis for EGFR mutant inhibition by trisubstituted imidazole inhibitors. J. Med. Chem. 2020 Apr 3;63(8):4293-305.

Heppner DE, Wittlinger F, Beyett TS, Shaurova T, Urul DA, Buckley B, Pham CD, Schaeffner IK, Yang B, Ogboo BC, May EW. Structural basis for inhibition of mutant EGFR with lazertinib (YH25448). ACS Med. Chem. Lett. 2022 Nov 10;13(12):1856-63.

Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, Liu L. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer cell. 2019 Nov 11;36(5):498-511.doi: 10.1016/j.ccell.2019.10.002.

Patel R, Kumar A, Lokhande KB, Swamy KV, Sharma NK. Molecular Docking and Simulation Studies Predict Lactyl-CoA as the Substrate for P300 Directed Lactylation. 2020.

Zhang Y, Yuan T, Li Y, Wu N, Dai X. Network pharmacology analysis of the mechanisms of compound Herba Sarcandrae (Fufang Zhongjiefeng) aerosol in chronic pharyngitis treatment. Drug Des Devel Ther. 2021 Jun 28:2783-803.

Adrian MF, Syahputra RA, Astyka R, Sumaiyah S, Harahap MA, Aini Z. The potential effect of aporphine alkaloids from nelumbo nucifera gaertn. As anti-breast cancer based on network pharmacology and molecular docking. Int j app pharm. 2024;16(1):280-7.

Sachdeo r, khanwelkar c, shete a. In silico exploration of berberine as a potential wound healing agent via network pharmacology, molecular docking, and molecular dynamics simulation. Int j app pharm. 2024;16(2):188-94.

Li L, Yang L, Yang L, He C, He Y, Chen L, Dong Q, Zhang H, Chen S, Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 Nov 8;18(1):146. doi: 10.1186/s13020-023-00853-2.

Sakle NS, More SA, Mokale SN. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020 Oct 14;10(1):17217. doi: 10.1038/s41598-020-74251-1.

Fan W, Gao X, Ding C, Lv Y, Shen T, Ma G, Yan L, Song S. Estrogen receptors participate in carcinogenesis signaling pathways by directly regulating NOD-like receptors. Biochem. Biophys. Res. Commun. 2019 Apr 2;511(2):468-75. Doi: 10.1016/j.bbrc.2019.02.085.

Das PK, Saha J, Pillai S, Lam AK, Gopalan V, Islam F. Implications of estrogen and its receptors in colorectal carcinoma. Cancer Med. 2023 Feb;12(4):4367-79. doi: 10.1002/cam4.5242.

Urosevic J, Nebreda AR, Gomis RR. MAPK signaling control of colon cancer metastasis. Cell cycle. 2014 Sep 2;13(17):2641-2. doi: 10.4161/15384101.2014.946374.

Slattery ML, Lundgreen A, Wolff RK. MAP kinase genes and colon and rectal cancer. Carcinogenesis. 2012 Dec 1;33(12):2398-408. doi: 10.1093/carcin/bgs305.

Baba Y, Nosho K, Shima K, Meyerhardt JA, Chan AT, Engelman JA, Cantley LC, Loda M, Giovannucci E, Fuchs CS, Ogino S. Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer. British journal of cancer. 2010 Sep;103(7):1025-33.

Szczuka I, Wierzbicki J, Serek P, Szczęśniak-Sięga BM, Krzystek-Korpacka M. Heat shock proteins HSPA1 and HSP90AA1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomol. 2021 Oct 27;11(11):1588. doi: 10.3390/biom11111588.

Lacey T, Lacey H. Linking hsp90’s role as an evolutionary capacitator to the development of cancer. Cancer. Treat. Res. Commun. 2021 Jan 1;28:100400. doi: 10.1016/j.ctarc.2021.100400.

Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural products targeting Hsp90 for a concurrent strategy in glioblastoma and neurodegeneration. Metabolites. 2022 Nov 21;12(11):1153. doi: https://doi.org/10.3390/metabo12111153

Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 signaling pathway in colorectal cancer. Biomedicines. 2021 Aug 15;9(8):1016. doi: 10.3390/biomedicines9081016.

Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, Marks BJ, Chu E, Schmitz JC. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019 Mar 7;38(10):1676-87. doi: 10.1038/s41388-018-0547-y.

Lin HC, Ho AS, Huang HH, Yang BL, Shih BB, Lin HC, Yeh C, Hsu CT, Cheng CC. STAT3‐mediated gene expression in colorectal cancer cells‐derived cancer stem‐like tumorspheres. Adv. Dig. Med. 2021 Dec;8(4):224-33. doi: 10.1002/aid2.13223.

Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, Li YK, Xiao J, Han Q, Wu Q. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci. Rep. 2020 Mar;40(3):BSR20200265. doi: 10.1042/BSR20200265.

Jiang YY, Guo FX, Chen LX, Xu LL, Zhang W, Liu B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia. 2019 Jun 1;135:114-29. doi: 10.1016/j.fitote.2019.04.012

Maicheen C, Phosrithong N, Ungwitayatorn J. Docking study on anticancer activity of chromone derivatives. Med. Chem. Res. 2013 Jan;22:45-56. Doi: 10.1007/s00044-012-0009-y.

Published

06-11-2024

How to Cite

PEMMEREDDY, R., MILI, A., BYREGOWDA, B. H., GIRIDHAR, J., K, S. R. P., MATHEW, A., PAI, V. ., & K. S, C. (2024). NETWORK PHARMACOLOGY BASED COMPUTATIONAL STUDY TO INVESTIGATE THE POTENTIAL MECHANISM OF SYZYGIUM CARYOPHYLLATUM AGAINST COLON CANCER. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.52490

Issue

Section

Original Article(s)