EVOLVING ROLE OF CAR T-CELL IN CANCER IMMUNOTHERAPY

Authors

  • AMAL A. SULAIMAN Department of Therapeutics and Clinical Pharmacy/Faculty of Pharmacy/Baghdad College for Medical Sciences/Baghdad, Iraq
  • ZAINAB AMER Al-SHAMAA Graduated pharmacy students
  • MOHAMMAD EMAD Al-ASSADI Graduated pharmacy students

DOI:

https://doi.org/10.22159/ijcpr.2019v11i6.36351

Keywords:

Cancer, Immunotherapy, CAR T cells

Abstract

Safety profiles of newly developed anti-cancer therapies is the main goal for efficient treatments to improve survival rates. Therefore, continuous efforts carried out to develop a therapeutic strategy with better outcomes. The concept of immune-oncology, which utilizes and enhances the capacity of human immune system was developed as an eventual opportunity to enhance remissions and limit the relaps of the disease. Later progression of cellular immunetherapies involve the introduction of genetically engineered T cells having chimeric antigen receptors (CARs) that embraced an antibody-derived antigen recognition domain connected to an internal T-cell signaling domain, so can recognize their targets with high degree of tumor selectivity. This approach showed vigorous antitumor outcomes and full recovery in end-stage patients suffering from liquid cancers as leukemia and lymphoma. However, still there is a challenge for bringing genetically modified T-cell immunotherapy to many patients with different tumor types including solid tumor. On other hand, studies indicated the potential to broaden T-cell–based therapies and foster for other possible applications beyond oncology as organ transplantation and autoimmunity. Therefore, this review aimed to illustrate the clinical applications, challenges, and approaches for more efficient clinical employment of CAR T cell therapies.

Downloads

Download data is not yet available.

References

1. Norouzi S, Gorgi Valokala M, Mosaffa F, Zirak MR, Zamani P, Behravan J. Crosstalk in cancer resistance and metastasis. Crit Rev Oncol Hematol 2018;132:145-53.
2. Wang L, Bernards R. Taking advantage of drug resistance, a new approach in the war on cancer. Front Med 2018;12:490-5.
3. Gatenby R, Brown J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb Perspect Med 2018;8:a033415.
4. Haji Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi Niaragh F, Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. Artificial Cells Nanomed Biotechnol 2016;44:1339-49.
5. Stanley J Oiseth, Mohamed S Aziz. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017;3:250-61.
6. Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res 2014;52:5913.,
7. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901–10.
8. K Murphy, P Travers, M Walport. Principles of innate and adaptive immunity in Janeway's Immunobiology. 7th edition. Garland Science Taylor and Francis Group, New York: NY, USA; 2008. p. 1–388.
9. Chen DS, Mellman I. Oncology meets immunology: the cancer immunity cycle. Immunity 2013;39:1-10.
10. Tao Z, Li S, Ichim TE, Yang J, Riordan N, Yenugonda V, et al. Cellular immunotherapy of cancer: an overview and future directions. Immunotherapy 2017;9:589-606.
11. MD Vesely, MH Kershaw, RD Schreiber, MJ Smyth. Natural innate and adaptive immunity to cancer. Annual Rev Immunol 2011;29:235–71.
12. Wolf H Fridman. From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J Immunol 2018;201:825-6.
13. RD Schreiber, LJ Old, MJ Smyth. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;6024:1565–70.
14. Hugo Gonzalez, Catharina Hagerling, Zena Werb. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018;32:1267-84.
15. JL Adams, J Smothers, R Srinivasan, A Hoos. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discovery 2015;14:603–21.
16. Yousef Ahmed Fouad, Carmen Aanei. Revisiting the hallmarks of cancer. Am J Cancer Res 2017;7:1016–36.
17. Anna Meiliana, Nurrani Mustika Dewi, Andi Wijaya. Cancer immunotherapy: a review. Indonesian Biomed J 2016;8:1-20.
18. Rutika Kokate. A systematic overview of cancer immunotherapy: an emerging therapy. Pharm Pharmacol Int J 2017;5:112.
19. Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol 2014;32:456-65.
20. Humphries C. Adoptive cell therapy: honing that killer instinct. Nat 2013;504:S13-15.
21. Dronca RS, Dong H. Immunomodulatory antibody therapy of cancer: the closer the better. Clin Cancer Res 2015;21:944–6.
22. Lipson EJ. Re-orienting the immune system: durable tumor regression and successful re-induction therapy using antiPD1 antibodies. Oncoimmunology 2013;2:e23661.
23. Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, et al. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013;2:e24238.
24. Luca Gattinoni. Adoptive T cell transfer: imagining the next generation of cancer immunotherapies. Semin Immunol 2016;28:1–2.
25. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes Fridman C, et al. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology 2012;1:306-15.
26. Minda Asfaw Geresu, Awel Feku Sultan, Seifudin Kassim Ahmed, Gezahegne Mamo Kassa. Immunotherapy against cancer: a comprehensive review. J Cancer Res Exp Oncol 2016;8:15-25.
27. Merhavi Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J 2017;23:48-53.
28. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8:299-308.
29. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 2015;8:337-50.
30. Dudley ME, Gross CA, Somerville RPT, Hong Y, Schaub. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol 2013;31:2152-9.
31. Michaela Sharpe, Natalie Mount. Genetically modified T cells in cancer therapy: opportunities and challenges. Disease Models Mechanisms 2015;8:337-50.
32. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850-4.
33. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011;17:4550-7.
34. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002;188:22-32.
35. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988;319:1676-80.
36. Besser MJ, Shapira Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013;19:4792-800.
37. Pilon Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, et al. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J Immunother 2012;35:615-20.
38. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 2012;18:6758-70.
39. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005;102:18538-43.
40. Galon J, Costes A, Sanchez Cabo F, Kirilovsky A, Mlecnik B, Lagorce Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-4.
41. Loi S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology 2013;2:e24720.
42. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994;91:6458-62.
43. Harris DT, Kranz DM. Adoptive t cell therapies: a comparison of t cell receptors and chimeric antigen receptors. Trends Pharmacol Sci 2016;37:220-30.
44. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev 2014;257:14-38.
45. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126-9.
46. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009;114:535-46.
47. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011;19:620-6.
48. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29:917-24.
49. Rapoport AP, Stadtmauer EA, Binder Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21:914-21.
50. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 2015;21:1019-27.
51. Ajina A, Maher J. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018;17:1795-815.
52. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 2015;33:9-15.
53. Enblad G, Karlsson H, Loskog AS. CAR-T-cell therapy: the role of physical barriers and immunosuppression in lymphoma. Hum Gene Ther 2015;26:498–505.
54. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017;5:1–6.
55. June CH, O’Connor RS, Kawalekar OU. CAR T cell immunotherapy for human cancer. Science 2018;359:1361-5.
56. Ramachandran M, Cancer Immunotherapy. Evolving oncolytic viruses and CART-cells. Digital Comprehensive. Dissertations from the Faculty of Medicine. Uppsala: Acta Universitatis Upsaliensis; 2016.
57. Scholler J, Brady T, Binder Scholl G. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012;4:132ra53.
58. Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, et al. CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol Res 2015;3:483–94.
59. Letourneur F, Klausner RD. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci USA 1991;88:8905-9.
60. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol 2015;36:494–502.
61. Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nat 2017;545:423-31.
62. Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987;149:960-8.
63. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.
64. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor t cells for sustained remissions in leukemia. N Engl J Med 2014;371:1507-17.
65. Schuster SJ, Svoboda J, Chong EA. Adoptive immunotherapy with CD19 CAR-T cells. Cancer Discovery 2017;7:1404-19.
66. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581-90.
67. Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S, Scholler J, et al. identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res 2015;3:356-67.
68. Peter J Stambrook, John Mahe, Farzin Farzaneh. Cancer immunotherapy: whence and whither. Mol Cancer Res 2017;16:427.
69. Zijun Zhaoa, Yu Chena, Ngiambudulu M Franciscoa, Yuanqing Zhangb N, Minhao Wu. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sinica B 2018;8:539–51.
70. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015;7:303ra139.
71. Porter DL. Randomized, phase II dose optimization study of chimeric antigen receptor (CAR) modified T cells directed against CD19 in patients (pts) with relapsed, refractory (R/R) CLL. J Clin Oncol 2016;34:3009.
72. Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 2018;11:132.
73. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified t cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–18.
74. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 y in the making. Blood Rev 2016;30:157–67.
75. Nirav N Shah, Theresa Maatman, Parameswaran Hari, Bryon Johnson. Multi targeted CAR-T cell therapies for B-cell malignancies. Frontiers Oncol 2019;9:146.
76. Lee DW, Kochenderfer JN, Stetler Stevenson M, Cui YK, Delbrook C, Feldman S. A. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase I dose-escalation trial. Lancet 2015;385:517–28.
77. Frey NV, Shaw PA, Hexner EO, Gill S, Marcucci K, Luger SM, et al. Optimizing chimeric antigen receptor (CAR) T cell therapy for adult patients with relapsed or refractory (R/R) acute lymphoblastic leukemia (ALL). J Clin Oncol 2016;34:7002.
78. Matthew H Forsberg, Amritava Das, Krishanu Saha, Christian M Capitini. The potential of CAR T therapy for relapsed or refractory pediatric and young adult B-cell ALL. Ther Clin Risk Manag 2018;14:1573–84.
79. Shalabi H, Angiolillo A, Fry TJ. Beyond CD19: opportunities for future development of targeted immunotherapy in pediatric relapsed-refractory acute leukemia. Front Pediatr 2015;3:80.
80. Mewawalla P, Nathan S. Role of allogeneic transplantation in patients with chronic lymphocytic leukemia in the era of novel therapies: a review. Ther Adv Hematol 2014;5:139–52.
81. Brudno JN. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 2016;34:1112–21.
82. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015; 33:540–9.
83. Turtle CJ. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017;35:3010–20.
84. Geyer MB, Park JH, Brentjens RJ. Chimeric antigen receptor-t cells for leukemias in adults: methods, data and challenges. Cell Gene Ther; 2018. p. 75–92.
85. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17:1453–64.
86. Turtle CJ, Hanafi LA, Berger C, Gooley T, Chaney C, Cherian C. Rate of durable complete response in ALL, NHL, and CLL after immunotherapy with optimized lymphodepletion and defined composition CD19 CAR-T cells. J Clin Oncol 2016;34:102.
87. Brentjens RJ. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra138.
88. Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016;127:1117–27.
89. Frey NV. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood 2014;124:2296–6.
90. Kochenderfer JN. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012;119:2709–20.
91. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017;168:724-40.
92. Bonini C, Mondino A. Adoptive T-cell therapy for cancer: the era of engineered T cells. Eur J Immunol 2015;45:2457–69.
93. Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Mol Immunol 2015;67:46–57.

Published

15-11-2019

How to Cite

SULAIMAN, A. A. ., . Z. A. . Al-SHAMAA, and M. E. . Al-ASSADI. “EVOLVING ROLE OF CAR T-CELL IN CANCER IMMUNOTHERAPY”. International Journal of Current Pharmaceutical Research, vol. 11, no. 6, Nov. 2019, pp. 19-27, doi:10.22159/ijcpr.2019v11i6.36351.

Issue

Section

Review Article(s)