THERAPEUTIC POTENTIAL OF PLANT-DERIVED OLIGOSTILBENES AND STILBENE GLYCOSIDES
DOI:
https://doi.org/10.22159/ijcpr.2020v12i6.40297Keywords:
Bioavailability, Chemopreventive, Cytotoxicity, Neuroinflammatory, Pharmacokinetics, Oligostilbene, Resveratrol, Secondary metabolite, Stilbene glycoside and SARAbstract
Stilbenoids constitute a major class of plant-derived secondary metabolites occurring in abundance across several families and are well-known for their nutritional and health-promoting benefits. Several investigations have established their therapeutic potential in the management of different types of cancer, neuroinflammation, arthritis, disorders in lipid metabolism, microbial infection etc. Studies on resveratrol monomer, oxyresveratrol, their synthetic analogs, piceatannol, pterostilbene can be found in the literature. But a collective and comprehensive review on chemistry, pharmacological effects, structure-activity relationship and pharmacokinetics of plant-derived oligostilbenes and stilbene glycosides is missing. These phytochemicals are generally characterised by poor oral bioavailability due to extensive first-pass metabolism and conjugation. The present chapter aims to fill up these lacunae and also focuses on further studies that can be performed in the future to translate these immensely potential secondary metabolites into human clinical setting from cell culture and animal studies at the preclinical level for effective therapeutic intervention of various pathological conditions.
Downloads
References
2. Sasikumar P, Prabha B, Reshmitha TR, Veluthoor S, Pradeep AK, Rohit KR, et al. Comparison of antidiabetic potential of (+) and (-)-hopeaphenol, a pair of enantiomers isolated from Ampelocissusindica (L.) and Vateriaindica linn., with respect to inhibition of digestive enzymes and induction of glucose uptake in L6 myotubes. RSC Adv 2016;6:77075-82.
3. B?aszczyk A, Sady S, Sielicka M. The stilbene profile in edible berries. Phytochem Rev 2019;18:37–67.
4. Lim CG, Koffas MAG. Bioavailability and recent advances in the bioactivity of flavonoid and stilbene compounds. Curr Org Chem 2010;14:1727-51.
5. Akinwumi BC, Bordun KAM, Anderson HD. Biological activities of stilbenoids. Int J Mol Sci 2018;19:25.
6. Rencoret J, Neiva D, Marques G, Gutierrez A, Kim H, Gominho J, et al. Hydroxystilbeneglucosides are incorporated into Norway spruce bark lignin. Plant Physiol 2019;180:1310-21.
7. Krga I, Milenkovic D, Morand C, Monfoulet L. An update on the role of nutrigenomic modulations in mediatingthe cardiovascularprotective effect of fruit polyphenols. Food Funct 2016;7:3656-76.
8. Rimando AM, Suh N. Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 2008;74:1635-43.
9. Mizuno CS, Ampomaah W, Mendonça FR, Andrade GC, Silva AMN, Goulart MO, et al. Cytotoxicity and genotoxicity of stilbene derivatives in CHO-K1 and HepG2 cell lines. Gene Mol Bio 2017;40:656-64.
10. Piekus S?omka N, Mikstacka R, Ronowicz J, Sobiak S. Hybrid cis-stilbene molecules: novel anticancer agents. Int J Mol Sci 2019;20:31.
11. Likhtenshtein GI. Stilbenes preparation and analysis in stilbenes. In: Applications in chemistry, life sciences and materials science. Weinheim: Wiley-VCH; 2010. p. 42.
12. Mekinic IG, Skroza D, Ljubenkov I, Katalinic V. Insight into the presence of stilbenes in medicinal plants traditionally used in Croatian folk medicine. Nat Prod Commun 2016;11:833-5.
13. Tsopmo A, Awah FM, Kuete V. Lignans and stilbenes from African medicinal plants. In: Kuete V. editor. Medicinal plant research in Africa: pharmacology and chemistry. New York: Elsevier; 2013. p. 435-78.
14. Antoni SJ, Rodriguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL. Role of natural stilbenes in the prevention of cancer. Oxid Med Cell Longey 2016:15. DOI: 10.1155/2016/3128951
15. Mellal AA, Ahmed AS, Tran VH, Duke CC. The pharmacological effect of stilbenes isolated from kangaroo island propolis on sirt-1 enzyme activity. Int J Pharm Pharm Sci 2016;8:264-7.
16. Almagro L, Navarro SB, Sabater Jara AB, Vera Urbina JC, Selles Marchart S, Bru R, et al. Bioproduction of trans-resveratrol from grapevine cell cultures. In: KG Ramawat, JM Merillon. editors. Natural Products. Berlin, Heidelberg: Springer; 2013. p. 1683-713.
17. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discovery 2006;5:493-507.
18. Tome Carneiro J, Larrosa M, Gonzalez Sarrias A, Tomas Barberan FA, Teresa M, Conesa G, et al. Resveratrol and clinical trials: the crossroad from in vitro studies to humanevidence. Curr Pharma Desi 2013;19:6064-93.
19. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 2017;35:9.
20. Zeka K, Arroo RRJ, Hassa D, Beresford KJM. New resveratrol analogues for potential use in diabetes and cancer diseases. Biomed J Sci Tech Res 2018;6:6.
21. Junsaeng D, Anukunwithaya T, Songvut P, Sritularak B, Likhitwitayawuid K, Khemawoot P. Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Complem Altern Med 2019;19:10.
22. Duangdee N, Chamboonchu N, Kongkiatpaiboon S, Prateeptongkum S. Quantitative 1HNMR spectroscopy for the determination ofoxyresveratrol in Artocarpuslacucha heartwood. Phytochem Anal 2019;30:617-22.
23. Chatsumpun N, Chuanasa T, Sritularak B, Lipipun V, Jongbunprasert V, Ruchirawat S, et al. Oxyresveratrol: structural modification and evaluation of biological activities. Molecules 2016;21:9.
24. Tadtong S, Chatsumpun N, Sritularak B, Jongbunprasert V, Ploypradith P, Likhitwitayawuid K. Effects of oxyresveratrol and its derivatives on cultured P19-derived neurons. Trop J Pharm Res 2016;15:2619-28.
25. Lim YH, Kim KH, Kim JK. Source, biosynthesis, biological activities and pharmacokinetics of oxyresveratrol. Korean J Food Sci Technol 2015;47:545-55.
26. Weso?owska O, Wisniewski J, Bielawska Pohl A, Paprocka M, Duarte N, Ferreira MJ, et al. Stilbenes as multidrug resistance modulators and apoptosis inducers in human adenocarcinoma cells. Anticancer Res 2010;30:4587-94.
27. Kumar A, Shih Yun L, Dhar S, Rimando AM, Levenson AS. Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells. J Med Act Plants 2014;3:1-8.
28. Hasriadi, Wong-on M, Lapphanichayakool P, Limpeanchob N. Neuroprotective effect of Artocarpuslakoocha extract and oxyresveratrol against hydrogen peroxide-induced toxicity in SH-SY5Y cells. Int J Pharm Pharm Sci 2017;9:229-33.
29. Lalitha V, Korah MC, Sengottuvel S, Sivakumar T. Antidiabetic and antioxidant activity of resveratrol and vitamin-C combination on streptozotocin induced diabetic rats. Int J Pharm Pharm Sci 2015;7:455-8.
30. Rajput SS, Kumar S, Metikurki B, Terai N, Schols D, Clercq ED, et al. Synthesis of stilbene-based resveratrol analogs as cytotoxic agents. Res J Pharm Biol Chem Sci 2016;7:1762-80.
31. Streicher W, Luedeke M, Azoitei A, Zengerling F, Herweg A, Genze F, et al. Stilbene induced inhibition of androgen receptor dimerization: implications for AR and AR?LBD-signalling in human prostate cancer cells. PLOS One 2014;9:12.
32. Tripathi A, Misra K. Stilbene analogues as inhibitors of breast cancer stem cells through P-glycoprotein efflux; a 3D quantitative structure-activity relationship study (inhibitory activity of stilbenes analogues on breast cancer stem cells). Int Conf Bioinform Sys Biol 2016:4. DOI:10.1109/BSB.2016.7552134
33. Zakova IT. Anti-staphylococcal effect of plant-derived stilbenes [Dissertation]. Prague: Czech University of Life Sciences Prague; 2019.
34. Temsamani H, Krisa S, Merillon JM, Richard T. Promising neuroprotective effects of oligostilbenes. Nutr Aging 2015;3:49–54.
35. Hemingway RW, Hillis WE, Bruerton K. A gas-liquid chromatographic examination of stilbene derivatives. J Chromat 1970;50:391-9.
36. Chan STS, Popplewell WL, Bokesch HR, McKee TC, Gustafson KR. Five new stilbenes from the stem bark of Artocarpuscommunis. Nat Prod Sci 2018;24:266-71.
37. Biais B, Krisa S, Cluzet S, Da Costa G, Waffo Teguo P, Merillon JM, et al. Antioxidant and cytoprotective activities of grapevine stilbenes. J Agric Food Chem 2017;65:4952-60.
38. Morita H, Abe I. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 2010;27:809-38.
39. Watts KT, Lee PC, Dannert CS. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 2006;6:12.
40. Cho HM, Ha TKQ, Phama HTT, Ana JP, Huha J, Leea BW, et al. Oligostilbenes from the leaves of Gnetumlatifolium and their biological potential to inhibit neuroinflammation. Phytochem 2019;165:9.
41. Manshoor N, Fathil MF, Jaafar MH, Jalil MASA. Liquid chromatography-mass spectrometry dereplication strategy for isolation of oligostilbenes. Int J Appl Chem 2016;12:121-8.
42. Wang KT, Chen LG, Tseng SH, Huang JS, Hsieh MS, Wang CC. Anti-inflammatory effects of resveratrol and oligostilbenesfrom Vitisthunbergii var. taiwaniana against lipopolysaccharide-induced arthritis. J Agric Food Chem 2011;59:3649-65.
43. Lee S, Mailar K, Kim M, Park M, Kim J, Min D, et al. Plant-derived purification, chemical synthesis, and in vitro/in vivo evaluation of a resveratrol dimer, viniferin, as an HCV replication inhibitor. Viruses 2019;11:18.
44. Chang C, Chien WC, Huang KX, Hsu JL. Anti-inflammatory effects of vitisinol A and four other oligostilbenesfrom Ampelopsis brevipedunculata var. hancei Molecules 2017;22:10.
45. Rohaiza S, Yaacob WA, Din LB, Nazlina I. Cytotoxic oligostilbenes from Shoreahopeifolia. Africa J Pharm Pharmacol 2011;5:1272-7.
46. Zhang C, Geng C, Jun J. A fragmentation study on four oligostilbenes by electrospray tandem mass spectrometry. Nat Prod Bioprosp 2019;9:279-86.
47. Navarro G, Mart?nez Pinilla E, Ortiz R, Noe V, Ciudad CJ, Franco R. Resveratrol and related stilbenoids, nutraceutical/dietary complements with health-promoting actions: Industrial production, safety, and the search for mode of action. Compr Rev Food Sci Food Safe 2018;17:808-27.
48. Norizan N, Ahmat N, Maulana Y, Shameeri Z. Isolation of oligostilbenes from Shorea bracteolate. Malaysian J Anal Sci 2016;20:1535-8.
49. Shang C, Kang Y, Yang Q, Zhu Q, Yao C. Versatile and enantioselective total synthesis of naturally active gnetulin. Adv Synth Catal 2019;361:3768-76.
50. GaoYand He C. Anti proliferative and anti metastasis effects of ten oligostilbenes from the seeds of Paeoniasuffruticosaon human cancer cells. Oncol Lett 2017;13:4371-7.
51. Indriani, Takaya Y, Puspaningsih NNT, Aminah NS. (–)-Ampelopsin F, dimerstilbene compound from Dryobalanopsoblongifolia and antimalarial activity test. Chem Nat Comp 2017;53:559-61.
52. Yang H, Sung SH, Kim YC. Two new hepatoprotective stilbene glycosides from Acer mono leaves. J Nat Prod 2005;68:101-3.
53. Li SG, Chen LL, Huang XJ, Zhao BX, Wang Y, Ye WC. Five new stilbene glycosides from the roots of Polygonummultiflorum. J Asian Nat Prod Res 2013;15:1145-51.
54. Espinoza JL, Elbadry MI, Taniwaki M, Harada K, Trung LQ, Nakagawa N, et al. The simultaneous inhibition of the mTOR and MAPK pathways with gnetin-C induces apoptosis in acute myeloid leukemia. Cancer Lett 2017;400:127-36.
55. Surapinit S, Sri-inb P, Tip-pyang S. Highly potent oligostilbene sbLOX-1 inhibitor from Gnetummacrostachyum. Nat Prod Commun 2014;9:970-4.
56. Almosnid NM, Gao Y, He C, Park HS, Altman E. In vitro antitumor effects of two novel oligostilbenes, cis-and trans-suffruticosol D, isolated from Paeoniasuffruticosa seeds. Int J Oncol 2016;48:646-56.
57. Cai T, Cai Y. Cis-ampelopsine, a stilbene isolated from the seeds of Paeoniasuffruticosa, inhibits lip polysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via blockade of nuclear factor-kappa Bsignaling pathway. Biol Pharm Bull 2011;34:1501-7.
58. Venkatesan T, Jeong MJ, Choi YW, Park EJ, Desouky SK, Kim YK. Deoxyrhapontigenin, a natural stilbene derivative isolated from Rheum undulatum L. induces endoplasmic reticulum stress-mediated apoptosis in human breast cancer cells. Integr Cancer Ther 2016;15:NP44-52.
59. Courtois A, Atgie C, Marchal A, Hornedo Ortega R, Lapeze C, Faure C, et al. Tissular distribution and metabolism of trans-viniferin after intraperitoneal injection in rat. Nutrients 2018;10:11.
60. Likhitwitayawuid K. Stilbenes with tyrosinase inhibitory activity. Curr Sci 2008;94:44-53.
61. Fernandez Cruz E, Cerezo AB, Cantos Villar E, Richard T, Troncoso AM, Garcia Parrilla MC. Inhibition of VEGFR?2 phosphorylation and e?ects on downstream signaling pathways in cultivated human endothelial cells by stilbenes from Vitisspp: J Agric Food Chem 2019;67:3909-18.
62. Tieng FYF, Latifah SY, MdHashim NF, Khazaai H, Ahmat N, Gopalsamy BWA. Ampelopsin E reduces the invasiveness of the triple negative breast cancer cell line, MDA-MB-231. Molecules 2019;24:25.
63. Nakagami Y, Suzuki S, Espinoza JL, Quang LV, Enomoto M, Takasugi S, et al. Immunomodulatory and metabolic changes after gnetin-c supplementation in humans. Nutrients 2019;11:16.
64. Kim M, Lim SJ, Oidovsambuu S, Nho CW. Gnetin H isolated from Paeoniaanomalainhibits Fc?RI-mediated mast cell signaling and degranulation. J Ethmo Phrarmacol 2014;154:798-806.
65. Zhan XH, Gong FC, Tan SZ, Huang PM, Tan YF. An immunosensing system using stilbene glycoside as afluorogenic substrate for an enzymatic reaction model. Sensors 2008;8:5661-72.
66. Cheng J, Wang H, Zhang Z, Liang K. Stilbene glycoside protects osteoblasts against oxidative damage via Nrf2/HO-1 and NF-?B signalling pathways. Arch Med Sci 2019;15:196-203.
67. Tang W. Hypoglycemic effects of stilbene glycoside from Polygonummultiflorumin type 2 diabetes and its mechanism of action [Dissertation]. The State University of New Jersey; 2015.
68. Hussain S, Slevin M, Ahmed N, West D, Choudhary MI, Naz HGJ. Stilbene glycosides are natural product inhibitors of FGF-2-inducedangiogenesis. BMC Cell Biol 2009;10:12.
69. Tsai HY, Chi Tang Ho CT, Yu Kuo Chen YK. Biological actions and molecular effects of resveratrol, pterostilbene, and 3?-hydroxypterostilbene. J Food Drug Anal 2017;25:134-47.
70. Zhang L, Zhou GZ, Song W, Tan XR, Guo YQ, Zhou B, et al. Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 2012;17:25-36.
71. Kutil Z, Kvasnicova M, Temml V, Schuster D, Marsik P, Cusimamani EF, et al. Effect of dietary stilbenes on 5-lipoxygenase and cyclooxygenases activities in vitro, Int J Food Prop 2015;8:1471-7.
72. Hornedo Ortega R, Cerezo AB, DePablos RM, Krisa S, Richard T, Garcia Parrilla MC, et al. Phenolic compounds characteristic of the Mediterranean diet in mitigating microglia-mediated neuro inflammation. Front Cell Neurosci 2018;12:20.
73. Mao P, Lei Y, Zhang T, Man C, Jin B, Li T. Pharmacokinetics, bioavailability, metabolism and excretion of ?-viniferin inrats. Acta Pharma Sin B 2016;6:243-52.
74. Schnekenburger M, Diederich M. Nutritional epigenetic regulators in the field of cancer: new avenues for chemo preventive approaches. In: SG Gray, editor. Epigenetic cancer therapy. New York: Elsevier; 2015. p. 393-425.
75. Hassan AHE, Choi E, Yoon YM, Lee KW, Yoo SY, Cho MC, et al. Natural products hybrids: 3,5,4?-trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur J Med Chem 2019;161:559-80.